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The Factorial

The number of ways that n distinguishable objects can be ordered is
given by

n (n − 1) (n − 2) . . . 2 · 1 = n!,

pronounced “n factorial”.

The number of ways that k objects can be chosen from n, k ≤ n,
when order is relevant is

n (n − 1) . . . (n − k + 1) =: n[k] =
n!

(n − k)!
,

which is referred to as the falling, or descending factorial.

Similarly, we denote the rising, or ascending factorial, by

n[k] = n (n + 1) . . . (n + k − 1) .
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The Binomial Coefficient

If the order of the k objects is irrelevant, then n[k] is adjusted by
dividing by k!, the number of ways of arranging the k chosen
objects. Thus, the total number of ways is

n (n − 1) · · · (n − k + 1)

k!
=

n!

(n − k)! k!
=:

(
n

k

)
,

which is pronounced “n choose k” and referred to as a binomial
coefficient for reasons which will become clear below.

Notice that, both algebraically and intuitively,
(
n
k

)
=
(

n
n−k
)
.

Example From a group of two boys and three girls, how many ways can two
be chosen such that at least one boy is picked? There are(

2
1

)(
3
1

)
= 6 ways with exactly one boy, and

(
2
2

)(
3
0

)
= 1 ways with

exactly two boys, or 7 altogether. Alternatively, from the
(

5
2

)
= 10

total possible combinations, we can subtract
(

3
2

)
= 3 ways such that

no boy is picked.
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A Useful Identity

A very useful identity is(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
, k < n. z

It follows because(
n

k

)
=

n!

(n − k)! k!
· 1 =

n!

(n − k)! k!
·
(

n − k

n
+

k

n

)
=

(n − 1)!

(n − k − 1)! k!
+

(n − 1)!

(n − k)! (k − 1)!
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
.

Some intuition: For any single particular object, either it is among
the chosen k or not. First include it in the k choices so that there
are
(
n−1
k−1

)
ways of picking the remaining k − 1. Alternatively, if the

object is not one of the k choices, then there are
(
n−1
k

)
ways of

picking k objects. As these two situations exclude one another yet
cover all possible situations, their sum equals the total number of
possible combinations.
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A Useful Identity: Pascal’s Triangle
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A Useful Identity (2)

By applying the identity
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
recursively,(

n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
=

(
n − 1

k

)
+

(
n − 2

k − 1

)
+

(
n − 2

k − 2

)
=

(
n − 1

k

)
+

(
n − 2

k − 1

)
+

(
n − 3

k − 2

)
+

(
n − 3

k − 3

)
...

=
k∑

i=0

(
n − i − 1

k − i

)
, k < n.
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The Multinomial Coefficient

If a set of n distinct objects is to be divided into k distinct groups,
whereby the size of each group is ni , i = 1, . . . , k and

∑k
i=1 ni = n,

then the number of possible divisions is given by(
n

n1, n2, . . . , nk

)
:=

(
n

n1

)(
n − n1

n2

)(
n − n1 − n2

n3

)
· · ·
(

nk

nk

)
=

n!∏
i ni !

.

This reduces to the familiar combinatoric when k = 2:(
n

n1, n2

)
=

(
n

n1

)(
n − n1

n2

)
=

(
n

n1

)(
n2

n2

)
=

(
n

n1

)
=

n!

n1! (n − n1)!

Example A small factory employs 15 people and produces three goods on
three separate assembly lines, A,B and C. Lines A and B each
require six people, line C needs three. How many ways can the
workers be arranged?(

15

6

)(
15− 6

6

)(
15− 6− 6

3

)
=

15!

6!9!

9!

6!3!
=

15!

6!6!3!
= 420420.
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Further Examples: Flags

Imagine you have a set of flags, which are the same size, shape, etc.,
and differ only with respect to color.

If you have 2 red and 3 green flags, and you arrange all 5 in a row,
how many “signals” can you make?

Of the 5 positions, you must choose 2 to be red, so
(

5
2

)
= 10.

Notice that
(

5
2

)
= 5!/(2!3!), so we can interpret the answer as being

the 5! = 120 possible orderings of the 5 flags, and then adjusted for
the redundancy by dividing by 2! to account for the fact that we
cannot differentiate between the two red flags, and similarly with
green.

From a set of 12 flags, 4 blue, 4 red, 2 yellow, and 2 green, all hung
out in a row, the number of different “signals” of length 12 you
could produce is given by 12! / (4! 4! 2! 2!) = 207900.
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Further Examples: Marbles

From a set of 2 red and 3 green marbles, how many different
nonempty combinations can be placed into an urn? (In other words,
the ordering does not count.)

Letting R denote red and G denote green, all possibilities are: of size
1, R, G; of size 2, RR, RG, GG; of size 3, RRG, RGG, GGG; of size
4, RRGG, RGGG; and of size 5, RRGGG; for a total of 11.

This total can be obtained without enumeration by observing that,
in each possible combination, either there are 0,1, or 2 reds, and
0,1,2, or 3 greens, or, multiplying, (2 + 1) · (3 + 1) = 12, but minus
one, because that would be the zero-zero combination.

In general, if there are n =
∑k

i=1 ni marbles, where the size of each
distinguishable group is ni , i = 1, . . . , k, then there are∏k

i=1(ni + 1)− 1 combinations ignoring the ordering.
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The Binomial Theorem

The relation

(x + y)n =
n∑

i=0

(
n

i

)
x iyn−i

is referred to as (Newton’s) binomial theorem. It is a simple, yet
fundamental result which arises in numerous applications.

Examples

(x + (−y))2 = x2−2xy + y 2, (x + y)3 = x3 + 3x2y + 3xy 2 + y 3,

0 = (1− 1)n =
n∑

i=0

(
n

i

)
(−1)n−i , 2n = (1 + 1)n =

n∑
i=0

(
n

i

)
.
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Example from Calculus

Let f (x) = xn for n ∈ N. The binomial theorem implies

f (x + h) = (x + h)n =
n∑

i=0

(
n

i

)
xn−ihi = xn + nhxn−1 + · · ·+ hn,

so that

f ′(x) = lim
h→0

f (x + h)− f (x)

h

= lim
h→0

(
nxn−1 + · · ·+ hn−1

)
= nxn−1.
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Induction

Induction is a method of proof for identities which are a function of
an integer variable, say n, and first entails verifying the conjecture
for n = 1, and then demonstrating that it holds for n + 1, assuming
it holds for n.
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Example

Let Sn =
∑n

k=0

(
n
k

)
. We wish to prove Sn = 2n. From (z),

n∑
k=0

(
n

k

)
=

n∑
k=0

[(
n − 1

k

)
+

(
n − 1

k − 1

)]
.

Using the fact that
(
m
i

)
= 0 for i > m,

n∑
k=0

(
n

k

)
=

n−1∑
k=0

(
n − 1

k

)
+

n∑
k=1

(
n − 1

k − 1

)
= 2n−1 +

n∑
k=1

(
n − 1

k − 1

)
,

and, with j = k − 1, the latter term is

n∑
k=1

(
n − 1

k − 1

)
=

n−1∑
j=0

(
n − 1

j

)
= 2n−1,

so that
∑n

k=0

(
n
k

)
= 2n−1 + 2n−1 = 2

(
2n−1

)
= 2n.
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Proof of Binomial Theorem

The theorem clearly holds for n = 1. Assuming it holds for n − 1,

(x + y)n = (x + y) (x + y)n−1 = (x + y)

(n−1)∑
i=0

((n − 1)

i

)
x iy (n−1)−i

=

n−1∑
i=0

(n − 1

i

)
x i+1yn−(i+1) +

n−1∑
i=0

(n − 1

i

)
x iyn−1−i+1.

Then, with j = i + 1,

(x + y)n =
n∑

j=1

(n − 1

j − 1

)
x jyn−j +

n−1∑
i=0

(n − 1

i

)
x iyn−i

= xn +

n−1∑
j=1

(n − 1

j − 1

)
x jyn−j +

n−1∑
i=1

(n − 1

i

)
x iyn−i + yn

= xn +

n−1∑
i=1

{(n − 1

i − 1

)
+
(n − 1

i

)}
x iyn−i + yn

= xn +

n−1∑
i=1

(n
i

)
x iyn−i + yn =

n∑
i=0

(n
i

)
x iyn−i . �
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Example of Induction with Co-Skewness Matrices

There is an enormous literature on the effect and use of skewness in asset allocation /
portfolio selection. The concept of co-skewness is central to the discussion.

Recall that, if R = (R1, . . . ,Rn)′ denotes the vector of n individual asset returns, then
E [R] is the n-length vector of means with ith element µi := E [Ri ], and Var (R) is the
n × n matrix of covariances with (ij)th element

σij = Cov
(
Ri ,Rj

)
= E

[
(Ri − µi )

(
Rj − µj

)]
and σ2

i = σii .

For n = 3,

Σ = Var (R) = E
[
(R− µ) (R− µ)′

]
=

 σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3

 .
Let a be a vector of portfolio weights. The variance of portfolio P = a′R is
Var (P) = a′Σa.
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Example of Induction with Co-Skewness Matrices

The extension of the variance to third-order cross products, i.e., the co-skewness,
would involve an n × n × n cube, with (ijk)th element
sijk = E

[
(Ri − µi )

(
Rj − µj

)
(Rk − µk )

]
. It is more far more useful to work with a

matrix version of this expression obtained by placing the n matrices of size n × n side
by side in a particular, agreed-upon order.

This is denoted by M3 (M is for moment, and 3 indicates the order; M4 is used for
kurtosis, etc.) and given by

M3 = E
[
(R− µ) (R− µ)′ ⊗ (R− µ)′

]
.

Recall: Let A =
(
aij
)

be an m × n matrix and B a p × q matrix. Then the (right)
Kronecker product of A and B is the mp × nq block matrix given by

A⊗ B =

 a11B · · · a1nB
...

...
am1B · · · amnB

 .
This is known as tensor notation and is used throughout the literature.1

1
See, e.g., Gustavo M. de Athaydea and Renato G. Flôres, Jr., Finding a Maximum Skewness Portfolio—A General Solution to

Three-Moments Portfolio Choice, Journal of Economic Dynamics and Control, 2004, Vol 28(7), 1335–1352; and Eric Jondeau, Ser-Huang

Poon and Michael Rockinger, Financial Modeling Under Non-Gaussian Distributions, Springer, 2007, Section 2.5.
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Example of Induction with Co-Skewness Matrices

Note that (R− µ) (R− µ)′ is n × n (and whose expectation is Var (R)), so that
(R− µ) (R− µ)′ ⊗ (R− µ)′ is n × n2.

To illustrate, for n = 4, with sijk = E
[
(Ri − µi )

(
Rj − µj

)
(Rk − µk )

]
, M3 is given by

M3 = E
[
(R− µ) (R− µ)′ ⊗ (R− µ)′

]
=

[
S1jk S2jk S3jk S4jk

]
, Sijk =


si11 si12 si13 si14

si21 si22 si23 si24

si31 si32 si33 si34

si41 si42 si43 si44

 .
Writing the entire M3 matrix out but just writing the indices (leave off the s) and
marking the i index with boldface, we have

111 112 113 114 211 212 213 214 311 312 313 314 411 412 413 414
121 122 123 124 221 222 223 224 321 322 323 324 421 422 423 424
131 132 133 134 231 232 233 234 331 332 333 334 431 432 433 434
141 142 143 144 241 242 243 244 341 342 343 344 441 442 443 444

 .
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Example of Induction with Co-Skewness Matrices

The skewness of the portfolio a′R is s3
P = a′M3 (a⊗ a).

To confirm this for n = 2, we have: P = a′R = a1R1 + a2R2, and, assuming E [R] = 0
for simplicity, we have

Skew (P) = Skew (a1R1 + a2R2) = E
[
(a1R1 + a2R2)3

]
= E

[
R3

1a
3
1 + R3

2a
3
2 + 3R1R

2
2a1a

2
2 + 3R2

1R2a
2
1a2

]
= a3

1s111 + a3
2s222 + 3a1a

2
2s122 + 3a2

1a2s112.

We see this is indeed equal to

s3
P = a′M3 (a⊗ a)

=
(

a1 a2
)( s111 s112 s211 s212

s121 s122 s221 s222

)
a1a1

a1a2

a2a1

a2a2


= a3

1s111 + a3
2s222 + a2

1a2s112 + a2
1a2s121 + a2

1a2s211 + a1a
2
2s122 + a1a

2
2s212 + a1a

2
2s221

= a3
1s111 + a3

2s222 + 3a2
1a2s112 + 3a1a

2
2s122.
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Example of Induction with Co-Skewness Matrices

Recall that Var (R) is symmetric, and so there are not N2 unique elements. Without
the diagonal, there are n2 − n elements, of which half are unique. Adding back on the
diagonal gives

n2 − n

2
+ n =

n2 + n

2
=

(n + 1) n

2
=
(n + 1

2

)
unique elements.

Another way to see this is to observe that the unique elements are on the diagonal and
upper diagonal part of the matrix, of which there are
n + (n − 1) + (n − 2) + · · ·+ 1 = (n + 1) n/2 elements.

Prove that the number of unique elements in M3 is
(n+2

3

)
.

Make a computer program (in matlab, call it function M3 = coskewness(n)) which
calculates the M3 matrix taking the redundancies into account, and for now, just fill
the ijkth entry with 100i + 10j + k. It should also confirm that the number of
nonredundant terms to compute is

(n+2
3

)
.
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Example of Induction with Co-Skewness Matrices

Working with the n = 4 case for illustration, observe that S1jk has, like the covariance

matrix,
(n+1

2

)
=
(5

2

)
= 10 unique elements. Now consider S2jk . We would expect that

its first row (for which j = 1) and first column (for which k = 1) will have
redundancies with elements in S1jk (for which i = 1). (Of course, Sijk is a symmetric
matrix, so its jth row is just the transpose of the jth column.) Inspection shows that
the first row of S2jk is indeed equivalent to the second row of S1jk . We see this clearly
in the following expression for

[
S1jk S2jk

]


111 112 113 114 211 212 213 214

121 122 123 124 221 222 223 224

131 132 133 134 231 232 233 234

141 142 143 144 241 242 243 244


Thus, from S2jk , we only need to consider the principle submatrix obtained by
“striking out” the first row and column. There are 6 unique elements here, or

(n
2

)
.
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Example of Induction with Co-Skewness Matrices
Continuing with S3jk , we would expect that its first row (and column) (for which j = 1
or k = 1), will have redundancies with elements in S1jk (for which i = 1). In
particular, the first row (and column) of S3jk should be equivalent to the third row
(and column) of S1jk . Likewise, we expect the second row (and column) of S3jk to be
equivalent to the third row (and column) of S2jk . We mark these in the following

expression for
[

S1jk S2jk S3jk

]


111 112 113 114 211 212 213 214 311 312 313 314

121 122 123 124 221 222 223 224 321 322 323 324

131 132 133 134 231 232 233 234 331 332 333 334

141 142 143 144 241 242 243 244 341 342 343 344


.

Thus, from S3jk , we only need to consider the principle submatrix obtained by striking

out the first two rows and columns, leaving 3 unique elements, or
(n−1

2

)
. Continuing

this argument, we see that M3 for n = 4 contains(n + 1

2

)
+
(n

2

)
+
(n − 1

2

)
+
(n − 2

2

)
=

(5

2

)
+
(4

2

)
+
(3

2

)
+
(2

2

)
= 10 + 6 + 3 + 1 = 20 =

(n + 2

3

)
unique elements, as claimed.
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Example of Induction with Co-Skewness Matrices

Applying the same argument to the general n case, M3 has

n∑
i=1

(n + 2− i

2

)
unique elements. We now wish to prove that(n + 2

3

)
=

n∑
i=1

(n + 2− i

2

)
. (1)

This is best done by induction.

It is easy to see that it holds for n = 1 and n = 2. Assume it holds for n. Then,
recalling the facts that(a

b

)
=
(a− 1

b

)
+
(a− 1

b − 1

)
and

n∑
i=1

i =
(n + 1) n

2
,

we have, for the n + 1 case, ...
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Example of Induction with Co-Skewness Matrices

(n+1)∑
i=1

((n + 1) + 2− i

2

)
=

n+1∑
i=1

(n + 3− i

2

)

=
n+1∑
i=1

(n + 2− i

2

)
+

n+1∑
i=1

(n + 2− i

1

)

=
n∑

i=1

(n + 2− i

2

)
+

n+1∑
i=1

(n + 2− i)

=
(n + 2

3

)
+ (n + 2) (n + 1)−

(n + 2) (n + 1)

2

=
(n + 2

3

)
+

(n + 2) (n + 1)

2

=
(n + 2

3

)
+
(n + 2

2

)
(n + 3

3

)
,

as was to be shown.
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Example of Induction with Co-Skewness Matrices

Another way to prove that the number of unique elements in M3 is
(n+2

3

)
is as follows.

Before solving the problem for M3, let’s do it again for the variance-covariance matrix
Var (R). Above, we saw that a way to see that the total number of unique elements in
Var (R) is is to note that the unique elements are on the diagonal and upper diagonal
part (or lower diagonal part) of the matrix, of which there are
n + (n − 1) + (n − 2) + · · ·+ 1 = (n + 1) n/2 elements.

What we have essentially done is to say that, for each of i = 1, 2, . . . , n rows, we want
to count those elements in the jth column for which j ≤ i . Thus, we want

n∑
i=1

i∑
j=1

1 =
n∑

i=1

i =
n (n + 1)

2
.
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Example of Induction with Co-Skewness Matrices

Similarly, for M3, we need to “run through” all i = 1, . . . , n but then only through the
j ≤ i and k ≤ j .
Note that, if you take any i , j , k ∈ {1, . . . , n}, then Si,j,k = Si∗,j∗,k∗ , where
i∗ = max(i , j , k), j∗ is the second largest, and k∗ is the last one remaining. Thus,
1 ≤ i∗ ≤ n, j∗ ≤ i∗, and k∗ ≤ j∗. So, we want

n∑
i=1

i∑
j=1

j∑
k=1

1 =
n∑

i=1

i∑
j=1

j =
n∑

i=1

1

2
i(i + 1) =

1

2

n∑
i=1

(
i2 + i

)
=

1

2

n(n + 1)(2n + 1)

6
+

1

2

n(n + 1)

2
.

Simplifying this yields
n(n + 1)(n + 2)

6
=

(
n + 2

3

)
.
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Example of Induction with Co-Skewness Matrices

The co-kurtosis matrix, M4, extends M3 in a natural way, and is defined as

M4 = E
[
(R − µ) (R − µ)′ ⊗ (R − µ)′ ⊗ (R − µ)′

]
,

with elements

κijk` = E
[
(Ri − µi )

(
Rj − µj

)
(Rk − µk ) (R` − µ`)

]
.

The number of unique elements is

n∑
i=1

i∑
j=1

j∑
k=1

k∑
`=1

1 =
n∑

i=1

i∑
j=1

j∑
k=1

k =
n∑

i=1

i∑
j=1

j (j + 1)

2

=
n∑

i=1

i (i + 1) (i + 2)

6

=
n (n + 1) (n + 2) (n + 3)

24
=
(n + 3

4

)
,

where we used the fact that (see pages 21-22 of the text for derivation)

n∑
k=1

k3 =
n2 (n + 1)2

4
.
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Vandermonde’s Theorem

This states that, for 0 < k ≤ min (N,M),(
N + M

k

)
=

k∑
i=0

(
N

i

)(
M

k − i

)
=

(
N

0

)(
M

k

)
+

(
N

1

)(
M

k − 1

)
+ · · ·+

(
N

k

)(
M

0

)
.

Proof I (intuitive): Assume N ≥ k and M ≥ k . Then either

all k objects are chosen from the group of size M and none from the
group of size N, or

k − 1 objects are chosen from the group of size M and 1 from the
group of size N, or

...
...

...

no objects are chosen from the group of size M and all k from the
group of size N.

Summing these disjoint events yields the desired formula.
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Vandermonde’s Theorem: Proof II

This algebraic proof follows from a more general result:

A non–obvious extension of the binomial theorem is

(x + y)[n] =
n∑

i=0

(
n

i

)
x [i ]y [n−i ], x [n] =

n−1∏
j=0

(x + ja), (2)

for n = 0, 1, 2, . . ., and x , y , a are real numbers.

It holds trivially for n = 0, and is easy to see for n = 1 and n = 2,
but otherwise appears difficult to verify, and induction gets messy
and doesn’t (seem to) lead anywhere.

It can be proven using properties of the beta function, introduced
below.
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Vandermonde’s Theorem: Proof II

With a = −1,

k [n] = (k) (k − 1) (k − 2) · · · (k − (n − 1)) =
k!

(k − n)!
=

(
k

n

)
n!

so that (2) reads(
x + y

n

)
n! =

n∑
i=0

(
n

i

)(
x

i

)
i !

(
y

n − i

)
(n − i)! = n!

n∑
i=0

(
x

i

)(
y

n − i

)
or (

x + y

n

)
=

n∑
i=0

(
x

i

)(
y

n − i

)
,

which is Vandermonde’s theorem.
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Vandermonde’s Theorem: Proof III

Equate coefficients of x r from each side of the identity

(1 + x)N+M = (1 + x)N (1 + x)M

and use the binomial theorem to get

(1 + x)N+M =
N+M∑
i=0

(
N + M

i

)
x i , (3)

with the coefficient of x r , 0 ≤ r ≤ N + M being
(
N+M

r

)
; and

(1 + x)N (1 + x)M =

 N∑
j=0

(
N

j

)
x j

( M∑
k=0

(
M

k

)
xk

)
=:
(
a0 + a1x + · · · aNxN

) (
b0 + b1x + · · · bMxM

)
,

where aj =
(
N
j

)
and bk =

(
M
k

)
are defined for convenience.
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Vandermonde’s Theorem: Proof III

Again:

(1 + x)N (1 + x)M =

 N∑
j=0

(
N

j

)
x j

( M∑
k=0

(
M

k

)
xk

)
=:
(
a0 + a1x + · · · aNxN

) (
b0 + b1x + · · · bMxM

)
,

(4)

where aj =
(
N
j

)
and bk =

(
M
k

)
.

Observe that the coefficient of x0 in (4) is a0b0; the coefficient of x1

is a0b1 + a1b0; and, in general, the coefficient of x r is
a0br + a1br−1 + · · ·+ arb0, which is valid for r ∈ {0, 1, . . . ,N + M}
if we define aj := 0 for j > N and bk := 0 for k > M.
Thus, the coefficient of x r is

r∑
i=0

aibr−i =
r∑

i=0

(
N

i

)(
M

r − i

)
.
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Vandermonde’s Theorem: Proof III

Again: The coefficient of x r is

r∑
i=0

aibr−i =
r∑

i=0

(
N

i

)(
M

r − i

)
.

From (3) above, recall that the coefficient of x r is
(
N+M

r

)
.

Thus, it follows that(
N + M

r

)
=

r∑
i=0

(
N

i

)(
M

r − i

)
, 0 ≤ r ≤ N + M,

as was to be shown.

A fourth proof is given in the text.

Marc S. Paolella Fundamental Probability: A Computational Approach 34



Basic Probability
Discrete Random Variables

Continuous Random Variables

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

Course Outline
1 Basic Probability

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

2 Discrete Random Variables
Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

3 Continuous Random Variables
Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations
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The Gamma Function

The gamma function is a smooth function (it is continuous as are all
its derivatives) of one parameter, say a, on R>0 which coincides with
the factorial function when a ∈ N.

We take as the definition of the gamma function the improper
integral expression of one parameter

Γ (a) :=

∫ ∞
0

xa−1e−x dx , a ∈ R>0.

There exists no closed form expression for Γ (a) in general, so that it
must be computed using numerical methods. However,

Γ (a) = (a− 1) Γ (a− 1) , a ∈ R>1,

and, in particular,

Γ (n) = (n − 1)! , n ∈ N.
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The Gamma Function (2)

To see the latter, apply integration by parts with u = xa−1 and
dv = e−x dx . This gives du = (a− 1) xa−2 dx , v = −e−x and

Γ (a) =

∫ ∞
0

xa−1e−x dx = uv |∞x=0 −
∫ ∞

0

v du = −e−xxa−1
∣∣∞
x=0

+

∫ ∞
0

e−x (a− 1) xa−2 dx

= 0 + (a− 1) Γ (a− 1) .

For example, Γ (1) = 0! = 1, Γ (2) = 1! = 1 and Γ (3) = 2! = 2.

It can be shown that Γ (1/2) =
√
π.
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The Gamma Function (3)

Example To calculate I =
∫∞

0
xne−mx dx , m > 0, define u = mx . Then

I = m−1

∫ ∞
0

(u/m)n e−u du = m−(n+1)Γ (n + 1) ,

which is a simple result, but required for the scaled gamma
distribution which we will see later.

The gamma function can be approximated by Stirling’s
approximation, given by

Γ (n) ≈
√

2πnn−1/2 exp (−n) ,

which, clearly, provides an approximation to n! for integer n. This is
a famous result which is important, if not critical, in a variety of
contexts in probability and statistics.
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The Incomplete Gamma Function

The incomplete gamma function is defined as

Γx (a) =

∫ x

0

ta−1e−t dt, a, x ∈ R>0

and also denoted by γ(x , a).

The incomplete gamma ratio is the standardized version, given by

Γ̄x (a) = Γx (a) /Γ (a) .

In general, both functions Γ (a) and Γx (a) need to be evaluated
using numerical methods.
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A Recursive Expression

For integer a, Γx (a) can be easily computed: Using integration by
parts with u = ta−1 and dv = e−t dt gives∫ x

0

ta−1e−t dt = −ta−1e−t
∣∣x
0

+ (a− 1)

∫ x

0

e−tta−2 dt

= −xa−1e−x + (a− 1) Γx (a− 1) ,

i.e.,
Γx (a) = (a− 1) Γx (a− 1)− xa−1e−x ,

so that Γx (a) can be evaluated recursively, noting that

Γx (1) =

∫ x

0

e−t dt = 1− e−x .
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The Beta Function

The beta function is an integral expression of two parameters,
denoted B (·, ·) and defined to be

B (a, b) :=

∫ 1

0

xa−1 (1− x)b−1 dx , a, b ∈ R>0.

Closed–form expressions do not exist for general a and b; however,
the identity

B (a, b) =
Γ (a) Γ (b)

Γ (a + b)

can be used for its evaluation in terms of the gamma function.
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Example and Exercises

Example: To express
∫ 1

0

√
1− x4 dx in terms of the beta function,

let u = x4 and dx = (1/4)u1/4−1 du, so that∫ 1

0

√
1− x4 dx =

1

4

∫ 1

0

u−3/4 (1− u)1/2 du =
1

4
B

(
1

4
,

3

2

)
.

Exercise I: Express

I =

∫ s

0

xa (s − x)b dx , s ∈ (0, 1) , a, b > 0

in terms of the beta function.

Exercise II: Express

I =

∫ 1

−1

(
1− x2

)a
(1− x)b dx

in terms of the beta function.
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Solution

1 To compute I =
∫ s

0
xa (s − x)b dx , s ∈ (0, 1), a, b > 0, use

u = 1− x/s (so that x = (1− u) s and dx = −s du) to get

I =

∫ s

0

xa (s − x)b dx = −s

∫ 0

1

((1− u) s)a (s − (1− u) s)b du

= sa+b+1

∫ 1

0

(1− u)a ub du = sa+b+1B (b + 1, a + 1) .

2 To compute I =
∫ 1

−1

(
1− x2

)a
(1− x)b dx , express 1− x2 as

(1− x) (1 + x) and use u = (1 + x) /2, (so that x = 2u − 1 and
dx = 2 du) to get

I = 22a+b+1

∫ 1

0

ua (1− u)a+b du = 22a+b+1B (a + 1, a + b + 1) .
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The Incomplete Beta Function

Similar to the incomplete gamma function, the incomplete beta
function is

Bx (p, q) = I[0,1] (x)

∫ x

0

tp−1 (1− t)q−1 dt.

The normalized function Bx (p, q) /B (p, q) is the incomplete beta
ratio, which we denote by B̄x (p, q).
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Course Outline
1 Basic Probability

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

2 Discrete Random Variables
Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

3 Continuous Random Variables
Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations
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Basic Counting

R unique balls in an urn: we randomly draw n of them.

We wish to know how many ways there are of doing this, but we
need to specify if the balls are drawn with or without replacement,
and also if the ordering of the balls is relevant or not.

Consider first drawing the balls “Ordered without replacement”:
The first draw is one of R possibilities; the second is one of (R − 1),
..., the nth is one of R − n + 1. In total: R[n] = R! / (R − n)!.

“Ordered with replacement”: the first draw is one of R possibilities;
the second is one of R, etc., so Rn possibilities.

“Unordered without replacement”: similar to ordered without
replacement, but we need to divide R[n] by n! to account for the

irrelevance of order, giving “R choose n”, R!
(R−n)!n! =

(
R
n

)
.
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Unordered Drawing with Replacement

The last case is “Unordered with replacement”.

Let the balls be labeled 1, 2, . . ., R.

Because order does not matter, the result after n draws can be
condensed to just reporting the number of times ball 1 was chosen,
the number of times ball 2 was chosen, etc.

Denote the number of times ball i was chosen as xi , i = 1, . . . ,R.

We are actually seeking the number of nonnegative integer solutions
to x1 + x2 + · · ·+ xR = n.

First let R = 2, i.e., we want the number of solutions to x1 + x2 = n.

Imagine placing the n balls along a straight line, like • • • • • for
n = 5. Now, by placing a partition among them, we essentially
“split” the balls into two groups.
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Unordered Drawing with Replacement (2)

We can place the partition in any of the n + 1 “openings”, such as
•• | • • •, which indicates x1 = 2 and x2 = 3, or as | • • • • •, which
indicates x1 = 0 and x2 = 5, etc.

If R = 3, we would need two partitions, e.g.,

•• | •• | • or • • | • • • | or | | • • • • • .

In general, we need R − 1 partitions interspersed among the n balls.
This can be pictured as randomly arranging n balls and R − 1
partitions along a line, for which there are (n + R − 1)! ways. But,
as the balls are indistinguishable, and so are the partitions, there are

(n + R − 1)!

n! (R − 1)!
=

(
n + R − 1

n

)
ways to arrange them, or

(
n+R−1

n

)
nonnegative integer solutions to

the equation
∑R

i=1 xi = n.

Marc S. Paolella Fundamental Probability: A Computational Approach 48



Basic Probability
Discrete Random Variables

Continuous Random Variables

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

Probability Spaces

A formal description of a probability space is “mathematical” and
somewhat abstract; it is based however on a “common sense”
frequentistic description. Let us introduce it by way of two examples:

Example Draw a card from a shuffled deck of 52 cards. Each of the cards is
equally likely to be drawn. Probability of getting the Ace of Spades,
is just 1/52, denoted Pr (♣A) = 1/52.

This assignment of probability appears quite reasonable; it can be
thought of as the “long run” fraction of times the Ace of Spades is
drawn when the experiment is repeated indefinitely under the same
conditions

Each card represents one of the 52 possible outcomes and said to be
one of the sample points making up the sample space.

Assign labels to each of the sample points: ω1 = ♣A,
ω2 = ♣2, . . . , ω13 = ♣K, ω14 = ♠A, . . . , ω52 = ♥K and denote the
sample space as Ω = {ωi , i = 1, . . . , 52}.
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Probability Spaces (2)

To compute the probability that the card drawn is an Ace, sum the
number of relevant sample points (ω1, ω14, ω27, ω40) and divide by
52, i.e., 4/52 = 1/13.

Any such case of interest is termed an event. The event that a
picture card is drawn has probability 12/52 = 3/13, etc.

There are 252 ≈ 4.5× 1015 possible events for this sample space and
experiment; this totality of possible events is simply called the
collection of events.

Example Draw two cards without replacement and order relevant.

Sample points consist of all 52 · 51 = 2652 possibilities, all of which
are equally likely.

A possible event is that both cards have the same suit.
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Probability Spaces (3)

Two ways of computing its probability are as follows.
There are 52 ways of drawing the first card; its suit determines the
12 cards which can be drawn next so that both have the same suit.
This gives a probability of

Pr (both cards have same suit) =
52

52

12

51
=

12

51
.

There are
(

4
1

)
possible suits to “choose from” times the number of

ways of getting two cards from this suit, or
(

13
2

)
. This gets doubled

because order matters. Thus

Pr (both cards have same suit) =

(
4
1

)
·
(

13
2

)(
52
2

) =
12

51
.

The number of events for this experiment is now astronomical:
22652 ≈ 2.14× 10798, but is still finite.
This intuitive method of assigning probabilities to events is valid for
any finite sample space in which each sample point is equally likely
to occur and also works for non–equally likely sample points.
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Finite Probability Spaces

If we denote the sample space as the set Ω with elements, or
possible outcomes, ωi , i = 1, . . . ,N, then Ω and a function Pr with
domain Ω and range [0, 1] such that

∑N
i=1 Pr (ωi ) = 1 is referred to

as a finite probability space.

If Pr (ωi ) is the same for all i (in which case Pr (ωi ) = 1/N), then
the finite probability space (Ω,Pr) is also called a symmetric
probability space.
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Exercise (Problem 2.12)

A lottery consists of 100 tickets, labeled 1, 2, . . . , 100, three of which are
“winning numbers”. You buy 4 tickets. Calculate the probability, p, that
you have at least one winning ticket.
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Solution

Think of the complement: You draw no winning tickets.

First way: From the 3 winning tickets, you choose none, from the 97
losing tickets, you draw 4. Thus,

1−p =

(
3
0

)(
97
4

)(
100

4

) =
97 · 96 · 95 · 94

4!

4!

100 · 99 · 98 · 97
=

96 · 95 · 94

100 · 99 · 98
= 0.8836.

Second way: The problem can be thought of as follows. Instead of the
100 tickets being produced with 3 winners, 97 losers, imagine they are
produced as 4 belonging to you, and 96 not. That is, their
“characteristic” is changed from being winner/loser to yours/not yours.
Then, 3 tickets are chosen to be labeled as winner, and we want the
probability that, from your 4 tickets, none are chosen. This is

1− p =

(
4
0

)(
96
3

)(
100

3

) =
96 · 95 · 94

3!

3!

100 · 99 · 98
=

96 · 95 · 94

100 · 99 · 98
.

Marc S. Paolella Fundamental Probability: A Computational Approach 54



Basic Probability
Discrete Random Variables

Continuous Random Variables

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

Countable Probability Spaces

For some experiments of interest, it might be the case that the
sample space Ω is denumerable or countably infinite, i.e., each
ωi ∈ Ω can be put in a 1–1 correspondence with the elements of N.

For example, consider tossing a fair coin until a tail appears.

It is theoretically possible that the first 10,000 trials will result in
heads, or that a tail may never occur.

Letting ωi be the total number of required tosses, i = 1, 2, . . ., we
see that Ω is countable.

If associated with Ω is a function Pr with domain Ω and range [0, 1]
such that

∑∞
i=1 Pr (ωi ) = 1, (Ω,Pr) is referred to as a probability

space. For example, taking Pr (ωi ) = (1/2)i is valid.
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Uncountable Probability Spaces

Matters increase in complexity when the sample space is
uncountable.

Examples of such sample spaces include

“random” numbers between zero and one,
times until an electrical component fail,
measurement of a patients blood pressure using an analog device.

In all these cases, one could argue that a finite number of significant
digits has to ultimately be used to measure or record the result, so
that the sample space, however large, is actually finite.

This is valid but becomes cumbersome: By allowing for a continuum
of sample points, the powerful techniques of calculus may be
employed, which significantly eases many computations of interest.

It is no longer conceptually clear what probability is assigned to a
“random” number between 0 and 1.
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Uncountable Probability Spaces (2)

Example Let R such a random number with its decimal representation
truncated at the third place. There are then 1000 possible
outcomes, 0.000, 0.001, . . . , 0.999, each equally likely.

The probability that R ≤ 0.400 is then 401/1000. As the number of
digits is increased, the probability of any particular outcome goes to
zero. The calculation of Pr (R ≤ 0.4), however, approaches 0.4.

Thus, with uncountable sample spaces, we assume that a probability
has been pre–assigned to each possible subset of Ω: for the random
number between 0 and 1, each point in [0, 1] is assigned probability
zero while each interval of [0, 1] is assigned probability corresponding
to its length.

Not all subsets of Ω can be assigned probabilities. The class of
subsets for which assignment is possible is termed a σ–field and
containing essentially all subsets relevant for practical problems.
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Axiomatic Description of Probability

A realization is the result of some well-defined trial or experiment
performed under a given set of conditions, whose outcome is not
known in advance, but belongs to a set of possibilities or set of
outcomes which are known in advance.

The set of possible outcomes could be countable (either finite or
denumerable, i.e., countably infinite) or uncountable.

Denote the sample space as Ω, the set of all possible outcomes,
with individual outcomes or sample points ω1, ω2, . . .. A subset of
the sample space is known as an event, usually denoted by a capital
letter, possibly with subscripts, i.e., A, B1, etc., the totality of which
under Ω will be denoted A, and forms the collection of
events—also called the collection of measurable events.
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Axiomatic Description of Probability (2)

An outcome ω ∈ Ω may belong to many events, always belongs to
the certain event Ω, and never to ∅, the empty set or impossible
event.

The usual operations in set theory can be applied to two events, i.e.,
complement, intersection, union, difference, symmetric
difference, inclusion, etc.

As in general set theory, two events are mutually exclusive if
A ∩ B = ∅.
If a particular set of events Ai , i ∈ J, are such that

⋃
i∈J Ai ⊇ Ω,

they cover (or exhaust) the same space Ω.

If events Ai , i ∈ J, are such that
⋃

i∈J Ai = Ω are mutually exclusive
and exhaust Ω, they partition Ω, i.e., one and only one of the Ai

will occur on a given trial.
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Probability Function

A probability measure is a set function which assigns a real
number Pr (A) to each event A ∈ A such that

Pr (A) ≥ 0,
Pr (Ω) = 1, and
for a countable infinite sequence of mutually exclusive events Ai ,

Pr

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

Pr (Ai ) .

The latter requirement is known as (countable) additivity.

If Ai ∩ Aj = ∅, i 6= j and An+1 = An+2 = · · · = ∅, then
Pr
(⋃n

i=1 Ai

)
=
∑n

i=1 Pr (Ai ), which is finite additivity.

The triplet {Ω,A,Pr(·)} refers to the probability space or
probability system with sample space Ω, collection of measurable
events A and probability measure Pr(·).
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Example

A fair die is tossed once and the number of dots is observed.

The set of outcomes is Ω = {1, 2, 3, 4, 5, 6} with natural ordering
ωi = i , i = 1, . . . , 6. Each outcome is equally likely: Pr (ωi ) = 1/6.

Possible events include E = {2, 4, 6}, O = {1, 3, 5} and
Ai = {1, 2, . . . , i}. E and O partition the sample space, i.e., E c = O
and Ω = E ∪ O, while Ai ⊆ Aj , 1 ≤ i ≤ j ≤ 6.

Events Ai exhaust Ω since
⋃6

i=1 Ai = Ω, but do not partition it.

Defining events B1 = A1 = ω1 and Bi = Ai \ Ai−1 = ωi , it follows
that Bi , i = 1, . . . , 6, partition Ω since precisely one and only one Bi

can occur on a given trial and
⋃6

i=1 Bi = Ω.
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Example (cont.)

The collection of all events, A, has 64 elements: Any event in A
specifies which of the six ωi are included.

By associating a binary variable with each of ωi , say 1 if present, 0
otherwise, we see that the number of possible elements in A is the
same as the number of possible codes from a 6-length string of
binary numbers, or 26.

For example, 000000 would denote the empty set ∅, 111111 denotes
the certain event Ω, 010101 denotes event E , etc.
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Example: Uncountably Infinite Sample Space

Imagine an automobile factory in which all new cars coming off a
particular assembly line are subjected to a battery of tests.

The proportion of cars that pass all the tests is a random with
countable sample space Ω0 = {m/n; m ∈ {0 ∪ N} , n ∈ N,m ≤ n},
i.e., all rational numbers between and including 0 and 1.

If m and n are typically quite large, it is usually mathematically more
convenient to use the uncountable sample space

Ω = {x : x ∈ [0, 1]} .
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Example (cont.)

Then A can be described as all interval subsets of [0, 1] along with
their complements and their finite unions and intersections.

If A is any such event, Pr (A) =
∫
A

f for a suitable function f .

For example, with f (x) = 20x3 (1− x) and

A = {proportion greater than 0.8} ,

Pr (A) =
∫ 1

0.8
f (x) dx ≈ 0.263. Observe also that Pr (A) ≥ 0 ∀

A ∈ A and Pr (Ω) =
∫ 1

0
f (x) dx = 1.
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Example: Countably Infinite Sample Space

Your newly married colleague has decided to have as many children as it
takes until she has a son.

Exclude any factors which would prevent her from having an unlimited
number of children.

Denote a boy as B and a girl as G. The set of possible outcomes can
be listed as ω1 = B, ω2 = GB, etc., i.e., the collection of all
sequences which end in a boy but have no previous occurrence of
such.

The sample space is Ω is clearly countable.
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Example on Sons, cont.

Events of interest might include
Ai = {at most i children} = {ω1, ω2 . . . , ωi} and
O = {odd number of children} = {ω1, ω3, . . .}.
Events O and Oc partition the sample space, but events Ai do not
(they do exhaust it though).

If we define B1 = A1 and Bi = Ai \ Ai−1, i ≥ 2, we see that Bi = ωi

and Bi , i = 1, 2, . . ., partition the sample space.

Let Pr (ωi ) = 2−i ; then Pr (Ai ) =
∑i

j=1 Pr (ωj) = 1− 2−i and

Pr (Ω) =
∑∞

j=1 Pr (ωj) = 1.
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Example: 3 daughters in a row

Not to be outdone by your colleague, you and your spouse decide to have
as many children as it takes until you have three daughters in row.

The set of possible outcomes is the collection of all sequences which end
in three girls but have no previous occurrence of such.

The total number of children “required” is of interest.

Let fn be the probability that n ≥ 3 children will born under this
family planning strategy.
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Example: 3 daughters (cont.)

Assume that p is the probability of getting a girl and q := 1− p is
that of a boy.

Clearly, f1 = f2 = 0, while f3 = p3, i.e., all three children are girls or,
in obvious notation, GGG is obtained.

For n = 4, the first child must be a boy and the next three are girls,
i.e., BGGG, with f4 = qp3 = qf3.

For n = 5, the situation must end as BGGG but the first child can
be either B or G, i.e., either BBGGG or GBGGG occurs, so that

f5 = q2f3 + qpf3 = qf4 + qpf3.
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Example: 3 daughters (cont.)

For n = 6, either BBBGGG or BGBGGG or GBBGGG or GGBGGG
can occur. The first two of these start with a boy and are accounted
for in the expression qf5.

Series GBBGGG corresponds to qpf4 and series GGBGGG to qp2f3,
i.e.,

f6 = qf5 + qpf4 + qp2f3.

This may seem to be getting complicated, but we are practically
done. Notice so far, that, for 4 ≤ n ≤ 6,

fn = qfn−1 + qpfn−2 + qp2fn−3.

But this holds for all n ≥ 4 because either a boy on the first trial
occurs and is followed by one of the possibilities associated with
fn−1; or the first two trials are GB followed by one of the possibilities
associated with fn−2; or GGB followed by fn−3.
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Example: 3 daughters (cont.)

This solution, along with the initial conditions f1 = f2 = 0, f3 = p3, is a
difference equation.

The recursive scheme is easy to implement in a computer program. To
compute and plot it in Matlab, the following code can be used:

p=0.5; q=1-p; f=zeros(60,1);

f(3)=p^3;

for i=4:60

f(i)=q*f(i-1)+q*p*f(i-2)+q*p^2*f(i-3);

end

bar(f)

It produces a graphic like the following:
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Example: 3 daughters (cont.)
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Figure: Recursion for p = 0.5 (left) and p = 0.3 (right).
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Example: 3 daughters (cont.)

Another quantity of interest is the “average” number of children a
family can expect if they implement such a strategy.

Assuming p = 1/2, i.e., that girls and boys are equally likely, an
example in Chapter 8 shows the solution to this latter question to be
14.

If instead of three girls in a row, m are desired, m ≥ 1, then

fn (m) =


0, if n < m,
pm, if n = m,

q
∑m−1

i=0 pi fn−i−1, if n > m.

Using this, fn (m) can be computed for any n,m ∈ N.
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Example: 3 daughters (cont.)

It is not difficult to extend the previous example in such a way that
the solution is either quite complicated, or even intractable.

In such cases, simulation could be used either to corroborate a
tentative answer, or just to provide an approximate, numeric solution
if an analytic solution is not available.

In our case with m = 3, simulation involves getting the computer to
imitate the family planning strategy numerous times (independently
of one another), and then tabulate the results.

A function in Matlab is given next to accomplish this.
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Example: 3 daughters (cont.)

function len = consecutive (p,m,sim)

len=zeros(sim,1);

for i=1:sim

if mod(i,100)==0, i, end

cnt=0; mcount=0;

while mcount<m

r=rand; cnt=cnt+1;

if r>p, mcount=0; else mcount=mcount+1; end

end

len(i)=cnt;

end

hist(len,max(len)-m+1)
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Example: 7 children

Example Your neighbors are somewhat more family planning conscious and
decide to have exactly seven children:

You (as the watchful neighbor) are interested in the sequence of
sexes of the children, i.e., Ω consists of the 27 possible binary
sequences of “b” and “g”.

Your interest centers on the probability that they have (at least)
three girls in a row.
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Example: 7 children (cont.)

A later example will show this to be about 0.367, assuming that
boys and girls are equally likely.

More generally, we will see that, if the probability of getting a girl is
p, 0 < p < 1, then at least three girls occur with probability
P = 5p3 − 4p4 − p6 + p7.

This is plotted as the solid line in the figure below.

The dots in the figure were obtained from simulation from the
program shown below.
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Example: 7 children (cont.)
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function f=threegirls(p,sim,kids,inarow)

if nargin<3 % nargin is a pre-defined variable in Matlab

kids=7; % which indicates the Number of ARGuments INput

end % to the function.

if nargin<4 % It is used to help assign default values

inarow=3; % to variables if they are not passed to the function

end

sum = 0;

for i=1:sim

k = binornd(1,p,kids,1); % iid Bin(1,p) vector of length kids

bool=0; % boolean variable, i.e., either true or false

for j=1:kids-inarow+1;

bool = ( bool | all(k(j:j+inarow-1) == ones(inarow,1)) );

if bool

sum=sum+1;

break % BREAK terminates the inner FOR loop, which

end % is useful because once 3 girls in a row are

end % found, there is no further need to search.

end

f = sum/sim;
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Properties: Basic

From the definition of a probability measure, many properties of
(Ω,A,Pr) are intuitive and easy to see, notably so with the help of a
Venn diagram, such as

(i) Pr (∅) = 0,

(ii) If A ⊂ B, then Pr (A) ≤ Pr (B).

(iii) Pr (A) ≤ 1,

(iv) Pr (Ac) = 1− Pr (A),

(v) Pr
(⋃∞

i=1 Ai

)
≤
∑∞

i=1 Pr (Ai ),

(vi) Pr (A1 ∪ A2) = Pr (A1) + Pr (A2)
−Pr (A1 ∩ A2).
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Properties: Basic (2)

From (i) and (ii), it follows that Pr (A) ≥ 0. Result (v) is equivalent
to saying that Pr (·) is subadditive and is also referred to as Boole’s
inequality; if the Ai are disjoint, then equality holds.

By taking complements of both sides (i.e., 1−), Booles’s inequality
can also be written as Pr

(⋂n
i=1 Ac

i

)
≥ 1−

∑n
i=1 Pr (Ai ).

Another useful result which is particularly clear from the Venn
diagram is that event A can be partitioned into two disjoints sets
AB and ABc , i.e., Pr (A) = Pr (AB) + Pr (ABc) or
Pr (A \ B) = Pr (ABc) = Pr (A)− Pr (AB).

If B ⊂ A, then Pr (AB) = Pr (B), so that

Pr (A \ B) = Pr (A)− Pr (B) , B ⊂ A.
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Properties: Advanced

Less obvious results which build on (i) through (vi) above include
the following powerful results.

1 Bonferroni’s inequality,
2 Poincaré’s theorem,
3 Sieve theorem or de Moivre–Jordan theorem, and
4 The Problem of Coincidences.

Marc S. Paolella Fundamental Probability: A Computational Approach 81



Basic Probability
Discrete Random Variables

Continuous Random Variables

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

1. Bonferroni’s Inequality

For n = 2, this is given by

Pr (A1 ∩ A2) ≥ Pr (A1) + Pr (A2)− 1,

which follows from properties (iii) and (vi) above:

Pr (A1A2) = Pr (A1) + Pr (A2)− Pr (A1 ∪ A2)

≥ Pr (A1) + Pr (A2)− 1.

In general,

Pr

(
n⋂

i=1

Ai

)
≥

n∑
i=1

Pr (Ai )− (n − 1) = 1−
n∑

i=1

Pr
(
Āi

)
,

which can be shown by induction.

Bonferroni’s inequality is of great importance in the context of joint
confidence intervals and multiple testing.
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2. Poincaré’s Theorem or the Inclusion–Exclusion Principle

Generalizing property (vi) above,

Pr

(
n⋃

i=1

Ai

)
=

n∑
i=1

(−1)i+1 Si ,

where
Sj =

∑
i1<···<ij

Pr
(
Ai1 · · ·Aij

)
,

i.e.,

Pr

(
n⋃

i=1

Ai

)
=

n∑
i=1

Pr (Ai )−
∑
i<j

Pr (Ai ∩ Aj)

+
∑

i<j<k

Pr (AiAjAk)− · · ·

+ · · ·+ (−1)n+1 Pr (A1A2 · · ·An) .
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Example

Assume that each of n indistinguishable balls is randomly placed in
one of r distinguishable cells, with n ≥ r . Let Ui be the event that
cell i is empty, i = 1, . . . , r .

Then p1 := Pr (Ui ) =
(
r−1
r

)n
, i = 1, . . . , r ,

p2 := Pr (UiUj) =
(
r−2
r

)n
for 1 ≤ i < j ≤ r , etc.,

and Poincaré’s theorem then gives the probability of at least one
empty cell as

P1,r = r−n
r−1∑
i=1

(−1)i+1

(
r

i

)
(r − i)n ,

noting that Pr (U1U2 · · ·Ur ) = 0.

Marc S. Paolella Fundamental Probability: A Computational Approach 84



Basic Probability
Discrete Random Variables

Continuous Random Variables

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

3. Sieve or de Moivre–Jordan Theorem

For events B1, . . . ,Bn, the probability that exactly m of the Bi

occur, m = 0, 1, . . . , n, is given by

pm,n ({Bi}) =
n∑

i=m

(−1)i−m
(

i

i −m

)
Si =

n∑
i=m

(−1)i−m
(

i

m

)
Si ,

where Sj =
∑

i1<···<ij
Pr
(
Bi1 · · ·Bij

)
with S0 = 1.

The probability that at least m of the Bi occur is given by

Pm,n =
n∑

i=m

(−1)i−m
(

i − 1

i −m

)
Si .

Observe that Pm,n =
∑n

i=m pi,n and pm,n = Pm,n − Pm+1,n.
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4. The Problem of Coincidences

If n objects, labelled 1 through n are randomly arranged in a row,
the probability that the position of exactly m of them coincide with
their label, 0 ≤ m ≤ n, is

cm,n =
1

m!

(
1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n−m

(n −m)!

)
.

Let Ai denote the event that the i th object is arranged correctly and
observe that Pr (A1) = (n − 1)!/n! = Pr (A2) = · · · = Pr (An) ;
Pr (A1A2) = (n − 2)! / n!, etc.

In general,

Pr (Ai1 Ai2 · · ·Aim) =
(n −m)!

n!
.
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4. The Problem of Coincidences (2)

For m = 0, the probability of no coincidences is, from Poincaré’s
theorem,

c0,n = 1− Pr (at least one) = 1− Pr (∪ni=1Ai )

= 1−
[(

n

1

)
(n − 1)!

n!
−
(

n

2

)
(n − 2)!

n!
+ · · ·+ (−1)n+1 0!

n!

]
= 1− 1 +

1

2!
− 1

3!
+ · · ·+ (−1)n

n!
.

For the general case, use the Sieve theorem.

For large n −m, note that cm,n is approximately e−1 /m!.

Imagine a party with four married couples. The four wives each grab
a different man to dance with. The probability can be calculated
that m of the women, m = 0, . . . , 4 happen to pair off with their
own husbands.
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Continuity of Probability Measure

Recall that a probability measure is a set function which assigns a
real number Pr (A) to each event A ∈ A such that (i) Pr (A) ≥ 0,
(ii) Pr (Ω) = 1, and (iii) for mutually exclusive Ai ,

Pr

(∞⋃
i=1

Ai

)
=
∞∑
i=1

Pr (Ai ) ,

where the latter requirement is known as countable additivity.

The property of countable additivity is a crucial assumption for
showing the following important result:
If A1,A2, . . . is a monotone sequence of (measurable) events, then

lim
i→∞

Pr (Ai ) = Pr
(

lim
i→∞

Ai

)
.
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Continuity of Probability: Increasing Events

Let A1,A2, . . . be a seq. of increasing events, i.e., A1 ⊂ A2 ⊂ · · · .
Let B1 = A1 and Bn = An \ An−1 = AnAc

n−1, n = 2, 3, . . . ,. Thus, B2 is
the part of A2 which is “new”, i.e., not already in A1. Thus,

An = A1 ∪ (A2 \ A1) ∪ (A3 \ A2) ∪ · · · ∪ (An \ An−1)

= B1 ∪ B2 ∪ · · · ∪ Bn =
n⋃

i=1

Bi ,

and, by construction, the Bi are disjoint, so that Pr (An) =
∑n

i=1 Pr (Bi ).
Then

Pr
(

lim
n→∞

An

)
= Pr

(
lim

n→∞

n⋃
i=1

Bi

)
= Pr

(∞⋃
i=1

Bi

)
and, from countable additivity,

Pr

(∞⋃
i=1

Bi

)
=
∞∑
i=1

Pr (Bi ) = lim
n→∞

n∑
i=1

Pr (Bi ) = lim
n→∞

Pr (An) .
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Continuity of Probability: Decreasing Events

Now consider the case for monotone decreasing Ai .

Recall (see Appendix A.1 on sets), if A1 ⊂ A2 ⊂ · · · , so that the An are
monotone increasing, then

lim
i→∞

Ai =
∞⋃
i=1

Ai .

Similarly, if A1 ⊃ A2 ⊃ · · · , (monotone decreasing), then

lim
i→∞

Ai =
∞⋂
i=1

Ai .

Recall also De Morgan’s laws,( ∞⋃
n=1

An

)c

=
∞⋂
n=1

Ac
n and

( ∞⋂
n=1

An

)c

=
∞⋃
n=1

Ac
n.
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Continuity of Probability: Decreasing Events

For monotone decreasing Ai , A1 ⊃ A2 ⊃ · · · , and Ac
1 ⊂ Ac

2 ⊂ · · · , so that

lim
i→∞

Pr (Ac
i ) = Pr

(
lim
i→∞

Ac
i

)
from the previous result. Then

lim
i→∞

Pr (Ac
i ) = lim

i→∞
(1− Pr (Ai )) = 1− lim

i→∞
Pr (Ai )

and, from the above results,

Pr
(

lim
i→∞

Ac
i

)
= Pr

(∞⋃
i=1

Ac
i

)
= 1− Pr

(∞⋂
i=1

Ai

)
= 1− Pr

(
lim
i→∞

Ai

)
,

so that
1− lim

i→∞
Pr (Ai ) = 1− Pr

(
lim
i→∞

Ai

)
.
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Exercise with Continuity I

Let An =
[
0, 1 + n−1

]
, n = 1, 2, . . ..

Show that {An} is monotone and compute L := limn→∞ An.

Let Bn := An \ An+1, n = 1, 2, . . ..

Express Bn as an interval and express An in terms of the Bi and L.
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Exercise with Continuity I: Solution

As 1/ (n + 1) < 1/n, An = [0, 1 + 1/n] ⊃ [0, 1 + 1/ (n + 1)] = An+1 and
so {An} is monotone decreasing for n = 1, 2, . . ..

So, L = limn→∞ An = ∩∞i=1Ai which, as limn→∞ n−1 = 0, is [0, 1].

We have B1 = [0, 2] \ [0, 1.5] = (1.5, 2]; B2 = (1 + 1/3, 1 + 1/2]; and

Bn = [0, 1 + 1/n] \ [0, 1 + 1/ (n + 1)] = (1 + 1/ (n + 1) , 1 + 1/n] .

Also,

An =

[
0, 1 +

1

n

]
= [0, 1] ∪

(
1 +

1

n + 1
, 1 +

1

n

]
∪
(

1 +
1

n + 2
, 1 +

1

n + 1

]
∪ · · ·

= L ∪
∞⋃
i=n

Bi .

It should be clear that L and the Bi are mutually exclusive.
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Exercise with Continuity II

Let {An} be a monotone decreasing sequence of events. Show that event
An can be expressed in terms of the Bn := An \ An+1 and
L := limn→∞ An.
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Exercise with Continuity II: Solution

We claim that An = L ∪
⋃∞

i=n Bi . We first show An ⊂ L ∪
⋃∞

i=n Bi .

Fix an n ∈ N and assume ω ∈ An. In general, the two events AnAn+1 and
AnA

c
n+1 are mutually exclusive and partition An, so either ω ∈ AnAn+1 or

ω ∈ AnA
c
n+1. This says, in our case with An ⊃ An+1 for all n, that either

ω ∈ AnAn+1 = An+1 or ω ∈ AnA
c
n+1 = An \ An+1 = Bn.

If the latter is true, i.e., ω ∈ Bn, then obviously ω ∈ L ∪
⋃∞

i=n Bi . If the former
is true, i.e., ω ∈ An+1, then we repeat the argument; either
ω ∈ An+1An+2 = An+2 or ω ∈ An+1A

c
n+2 = An+1 \ An+2 = Bn+1.

Continuing, we see that it must be the case that either ω ∈ Bn or ω ∈ Bn+1 or
..., or @m ≥ n such that ω ∈ Bm = Am \ Am+1, i.e., @m ≥ n such that
ω /∈ Am+1, in which case it is in An,An+1, . . ., and in A1, . . . ,An−1 because the
An are monotone decreasing, i.e., ω ∈ ∩∞i=1Ai = limn→∞ An = L. Thus,
ω ∈ L ∪

⋃∞
i=n Bi .

To prove An ⊃ L ∪
⋃∞

i=n Bi , simply note that, by definition, L ⊂ An, and as
An ⊃ An+1, Bi ⊂ An for i = n, n + 1, . . ..
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Exercise with Continuity III

Let {An} be a monotone decreasing sequence of events. Show that
limn→∞ Pr (An) = Pr (limn→∞ An) using the property of countable
additivity.
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Exercise with Continuity III: Solution

With Bn := An \ An+1, from countable additivity and the result in the
previous problem,

Pr (An) = Pr (L ∪ ∪∞i=nBi ) = Pr (L)+
∞∑
i=n

Pr (Bi ) = Pr (L)+ lim
k→∞

k∑
i=n

Pr (Bi ) .

Taking limits of both sides,

lim
n→∞

Pr (An) = Pr (L) + lim
n→∞

lim
k→∞

k∑
i=n

Pr (Bi ) = Pr (L) = Pr
(

lim
n→∞

An

)
,

which follows because
∑

Pr (Bi ) is convergent (and the Cauchy criterion
applies; see, e.g., Appendix A.2, page 384).
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Exercise with Continuity IV

We wish to prove that the continuity of probability and the property of
countable additivity are equivalent:

Prove: For any sequence of increasing measurable events A1 ⊂ A2 ⊂ · · · ,
if limi→∞ Pr (Ai ) = Pr (limi→∞ Ai ), then countable additivity holds, i.e.,
for an arbitrary sequence of mutually exclusive measurable events Bi ,
Pr (
⋃∞

i=1 Bi ) =
∑∞

i=1 Pr (Bi ).
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Exercise with Continuity IV: Solution

Let {Bi} denote an arbitrary sequence of disjoint measurable events, and
define An = ∪ni=1Bi , n = 1, 2, . . ., so that {An} is an increasing sequence
of measurable events.

Then
∞⋃
i=1

Bi = lim
n→∞

n⋃
i=1

Bi = lim
n→∞

An

and, as limi→∞ Pr (Ai ) = Pr (limi→∞ Ai ),

Pr

(∞⋃
i=1

Bi

)
= Pr

(
lim

n→∞
An

)
= lim

n→∞
Pr (∪ni=1Bi )

= lim
n→∞

n∑
i=1

Pr (Bi ) =
∞∑
i=1

Pr (Bi ) ,

which is countable additivity.
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Course Outline
1 Basic Probability

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

2 Discrete Random Variables
Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

3 Continuous Random Variables
Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations
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Conditional Probability

In most applications, there will exist information which, when taken
into account, alters the assignment of probability to events of
interest. As a simple example, the number of customer transactions
requested per hour from an on-line bank might be associated with
an unconditional probability which was ascertained by taking the
average of a large collection of hourly data.

However, the conditional probability of receiving a certain number of
transactions might well depend on the time of day, the arrival of
relevant economic or business news, etc. If these events are taken
into account, then more accurate probability statements can be
made. Other examples include the number of years a manufacturing
product will continue to work, conditional on various factors
associated with its operation, and the batting average of a baseball
player conditional on the opposing pitcher, etc.
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Conditional Probability (2)

If Pr (B) > 0, then the conditional probability of event A given the
occurrence of event B, or just the probability of A given B, is

Pr (A | B) =
Pr (AB)

Pr (B)
.

This definition is motivated by observing that the occurrence of
event B essentially reduces the relevant sample space, as indicated
in the Venn diagram.
The probability of A given B is the intersection of A and B, scaled
by Pr (B). If B = Ω, then the scaling factor is just Pr (Ω) = 1,
which coincides with the unconditional case.
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Independent Events

If the occurrence or “non-occurrence” of event B does not influence
that of A, and visa-versa, then the two events are said to be
independent, i.e., Pr (A | B) = Pr (A) and Pr (B | A) = Pr (B).

From the definition of conditional probability, if events A and B are
independent, then Pr (AB) = Pr (A) Pr (B). This is also referred to
as pairwise independence.

In general, events Ai , i = 1, . . . , n are mutually or completely
independent if, and only if, for every collection Ai1 ,Ai2 , . . . ,Aim ,
1 ≤ m ≤ n,

Pr (Ai1 Ai2 · · · Aim) =
m∏
j=1

Pr
(
Aij

)
.
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Independent Events (2)

For n = 3, this means that

Pr (A1A2) = Pr (A1) Pr (A2) ,

Pr (A1A3) = Pr (A1) Pr (A3) ,

Pr (A2A3) = Pr (A2) Pr (A3) ,

and Pr (A1A2A3) = Pr (A1) Pr (A2) Pr (A3).

That pairwise independence does not imply mutual independence is
referred to as Bernstein’s Paradox.

Letting Bi be either Ai or Ac
i , i = 1, . . . , n, the events Bi are

mutually independent.
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Example

Independent events {A,B,C} occur with Pr (A) = a, Pr (B) = b,
Pr (C ) = c . Let E be the event that at least one of {A,B,C} occur.
Using the complement, we can write

Pr (E ) = 1− Pr {neither A nor B nor C occur}
= 1− Pr (AcBcC c) = 1− (1− a) (1− b) (1− c)

from the independence of A,B and C .

Alternatively, from Poincaré’s theorem,

Pr (E ) = Pr (A ∪ B ∪ C )

= a + b + c − ab − ac − bc + abc.
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Example (2)

A third method results by observing that A ∪ B ∪ C is the same as
A ∪ AcB ∪ AcBcC , as best seen using the Venn diagram. As the
three events A, AcB and AcBcC are nonoverlapping,

Pr (E ) = Pr (A) + Pr (AcB) + Pr (AcBcC )

= a + (1− a) b + (1− a) (1− b) c .

Straightforward algebra shows the equivalence of all the solutions.
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Total Probability

From a Venn diagram with (overlapping) events A and B, event A
may be partitioned into mutually exclusive events AB and ABc , so
that

Pr (A) = Pr (AB) + Pr (ABc)

= Pr (A | B) Pr (B) + Pr (A | Bc) (1− Pr (B)) .

This is best understood as expressing Pr (A) as a weighted sum of
conditional probabilities in which the weights reflect the occurrence
probability of the conditional events.

In general, if events Bi , i = 1, . . . , n are exclusive and exhaustive,
then the law of total probability states that

Pr (A) =
n∑

i=1

Pr (A | Bi ) Pr (Bi ) .
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Example

Interest centers on the probability of getting at least three girls in a
row among seven children. Assume that each child’s sex is
independent of the all the others and let p = Pr (girl on any trial).
Denote the event that three girls in a row occur as R and the total
number of girls as T . Then, from the law of total probability,

Pr (R) =
7∑

t=0

Pr (R | T = t) Pr (T = t) .

Clearly, Pr (R | T = t) = 0 for t = 0, 1, 2 and
Pr (R | T = 6) = Pr (R | T = 7) = 1.
For T = 3, there are only 5 possible configurations, i.e.,

gggbbbb, bgggbbb, . . . , bbbbggg ,

so that

Pr (R | T = 3) =
5p3 (1− p)4(
7
3

)
p3 (1− p)4 =

5

35
.
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Example (2)

Some work shows that Pr (R | T = 4) = 16/
(

7
4

)
= 16/35 and

Pr (R | T = 5) = 18/

(
7

5

)
= 18/21,

so that

Pr (R) = 0 + 0 + 0 +
5

35

(
7

3

)
p3 (1− p)4

+
16

35

(
7

4

)
p4 (1− p)3 +

18

21

(
7

5

)
p5 (1− p)2

+

(
7

6

)
p6 (1− p) + p7 = 5p3 − 4p4 − p6 + p7.

For p = 1/2, Pr (R) ≈ 0.367.
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Bayes’ Rule

From the law of total probability, Bayes’ rule is given by

Pr (B | A) =
Pr (A ∩ B)

Pr (A)
=

Pr (A | B) Pr (B)

Pr (A | B) Pr (B) + Pr (A | Bc) Pr (Bc)
.

For mutually exclusive and exhaustive events Bi , i = 1, . . . , n, the
general Bayes’ rule is given by

Pr (B | A) =
Pr (A | B) Pr (B)∑n

i=1 Pr (A | Bi ) Pr (Bi )
.
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Example of Bayes’ Rule

A very important example of Bayes’ rule is the following.

A test for a disease possesses the following accuracy. If a person has
the disease (event D), the test detects it 95% of the time; if a
person does not have the disease, the test will falsely detect it 2% of
the time.

Let d0 denote the prior probability of having the disease before the
test is conducted. (This could be taken as an estimate of the
proportion of the relevant population believed to have the disease).

Assume that, using this test, a person is detected as having the
disease (event +).

To find the probability that the person actually has the disease,
given the positive test result, we use Bayes’ rule,

Pr (D | +) =
0.95d0

0.95d0 + 0.02 (1− d0)
.
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Example (cont.)

The answer may also be graphically depicted via a tree diagram.

The probability of an end-node is the product of the “branch”
probabilities starting from the left, where d1 = 1− d0.

Then Pr (D | +) is obtained as the ratio of the end-node {D ∩+} and all
branches (including {D ∩+}) leading to +.
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test−
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0.95

0.05
0.02

0.98
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Example (cont.)

For a rare disease such that d0 = 0.001, Pr (D | +) is only 0.045!

There is evidence to suggest that many medical doctors are not
capable of this calculation and vastly overestimate the probability of
having a disease given a positive test result; see Gerd Gigerenzer’s
“Reckoning with Risk” (2002) for numerous examples and some of
the social and economic implications of this.

To vastly aid understanding of Bayes’ rule in this context, Gigerenzer
recommends expressing things not in terms of probabilities, but
rather in “natural frequencies”.

For example...
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Example (cont.)

(Gigerenzer, 2002, p. 41) Consider posing the following question to
a physician (let alone a layperson):

Referring to asymptomatic (when the patient does not experience
any noticeable symptoms) women aged 40 to 50 undergoing a
routine mammography screening:

The probability that one of these women has breast cancer is 0.8
percent. If a woman has breast cancer, the probability is 90 percent
that she will have a positive mammogram. If a woman does not
have breast cancer, the probability is 7 percent that she will still
have a positive mammogram. Imagine a woman who has a positive
mammogram. What is the probability that she actually has breast
cancer?
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Example (cont.)

Bayes’ rule of course gives the answer: With d0 = 0.008,

Pr (D | +) =
0.90d0

0.90d0 + 0.07 (1− d0)
= 0.094,

i.e., less than a 1 in 10 chance!

When the question is posed as above, it is not obvious for most
people to apply Bayes’ rule.
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Example (cont.)

In terms of “natural frequencies”, the same problem can be
expressed as:

Eight out of every 1,000 women have breast cancer. Of these 8
women with breast cancer, 7 will have a positive mammogram. Of
the remaining 992 women who don’t have breast cancer, some 70
will still have a positive mammogram.
Imagine a sample of women who have positive mammograms in
screening. How many of these women actually have breast cancer?

In studies conducted by Gigerenzer, doctors are much more
successful in getting the correct answer with this formulation:

Roughly, 7 out of 70+7 women actually have breast cancer, or
1/11 = 0.091.
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Gambler’s Ruin Problem

Let two people, say A and B, repeatedly play a game, where each
game is independent and p = Pr (A wins) = 1− Pr (B wins).

If, on any given round, A wins, she collects one dollar from B; if B
wins, he gets one dollar from A.

There is a total of T dollars at stake, and person A starts with i
dollars and person B starts with T − i dollars.

Play continues until someone losses all his or her money.

The probability that A winds up with all the money (and B goes
bankrupt, or is ruined) is, with r = (1− p)/p,

1− r i

1− rT
, p 6= 1/2, and

i

T
, p = 1/2.
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Gambler’s Ruin Problem

Similarly, the probability that A goes bankrupt is

r i − rT

1− rT
, p 6= 1/2, and

T − i

T
, p = 1/2. (5)

(Problem 3.19). Derive (5) first for p 6= 1/2. Hint: Let A be the event
that person A is ruined, let W be the event that A wins the first round
played, let q = 1− p, and define

si := Pri (A) := Pr(A | A starts with i dollars and B starts with T − i dollars).

Use the law of total probability to derive the difference equation

si = psi+1 + qsi−1, 1 ≤ i ≤ T .

With r = q/p and di = si+1 − si , show that di = r id0. Then determine

the boundary conditions s0 and sT and use that s0 − sT =
∑T−1

i=0 di to
derive an expression for d0. Finally, write a similar telescoping expression
for sj − sT , from which the answer follows.
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Gambler’s Ruin Problem: Solution to Derivation

Note that, if A wins the first round played, then (because of
independence of trials) the game can be viewed as “starting over” but
such that now A has i + 1 dollars and B has T − i − 1 dollars. Thus,
Pri (A |W ) = Pri+1 (A) = si+1. Using the law of total probability,

si = Pri (A) = Pri (A |W ) Pr (W ) + Pri
(
A | W̄

)
Pr
(
W̄
)

= si+1 p + si−1 q,

i.e., si = psi+1 + qsi−1, 1 ≤ i ≤ T , or, as si = psi + qsi ,

qsi − qsi−1 = psi+1 − psi .

With r = q/p and di = si+1 − si , this yields di = rdi−1 or di = r id0.
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Gambler’s Ruin Problem: Solution to Derivation

Conditioning on i = 0, we see that s0 = 1. Similarly, sT = 0. Then

1 = s0 − sT = −
T−1∑
i=0

di = −d0

T−1∑
i=0

r i = −d0
1− rT

1− r

so that

d0 = − 1− r

1− rT
.

Similarly,

sj = sj − 0 = sj − sT = −d0

T−1∑
i=j

r i = −d0
r j − rT

1− r
,

so that

sj = (−1)
1− r

1− rT
(−1)

r j − rT

1− r
=

r j − rT

1− rT
, 0 ≤ j ≤ T .
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Gambler’s Ruin Problem for p = 1/2

The probability that A winds up with all the money (and B goes
bankrupt) is, with r = (1− p)/p,

1− r i

1− rT
, p 6= 1/2, and

i

T
, p = 1/2.

Apply l’Hôpital’s rule to derive the latter result.
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Gambler’s Ruin Problem: Solution to Derivation for
p = 1/2

We have

lim
p→ 1

2

1−
(

1−p
p

)i
1−

(
1−p
p

)T
is indeterminant, l’Hôpital’s rule implies

lim
p→ 1

2

d
dp

(
1−

(
1−p
p

)i)
d
dp

(
1−

(
1−p
p

)T) = lim
p→ 1

2

i
p(1−p)

(
1
p (1− p)

)i
T

p(1−p)

(
1
p (1− p)

)T =
4i

4T
=

i

T
.
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Course Outline
1 Basic Probability

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

2 Discrete Random Variables
Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

3 Continuous Random Variables
Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations
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Random Variables

A random variable (r.v.) X is in general a function from the sample
space Ω to the real line R. A univariate random variable X is such
that for every x ∈ R, the set {ω ∈ Ω : X (ω) ≤ x} belongs in A, i.e.,
is measurable.

The most important function associated with a r.v. X is the
cumulative distribution function, or cdf, denoted FX (·) or F (·).
It is defined to be Pr (X ≤ x) for some point x ∈ R.

A cdf F has the following properties:

(i) 0 ≤ F (x) ≤ 1 for all x ∈ R,
(ii) F is nondecreasing, i.e., if x1 < x2, then F (x1) ≤ F (x2),
(iii) F is right continuous, i.e., limx→x+

0
F (x) = F (x0) for all x0 ∈ R,

(iv) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.
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Example

A fair, 6-sided die is thrown once with the value of the top face
being of interest, so that Ω = {1, 2, . . . , 6} with each element being
equally likely to occur. If the random variable X is this value, then
X (ω) = ω and FX is given by the right continuous step function
depicted below.

FX (x) =



0, if x < 1,
1/6, if 1 ≤ x < 2,
2/6, if 2 ≤ x < 3,
...

...
5/6, if 5 ≤ x < 6,
1, if x ≥ 6.

6

-
0 2 4 6

0

1/3

2/3

1

r r r r r

b b b b b

b

r
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Example (2)

Note that lower case x refers to a particular point on the real line,
while X is the random variable of interest; this is the usual notation
used.

Let xi be a bounded decreasing sequence with limi→∞ xi = x0 = 2.
Then limi→∞ F (xi ) = 2/6 = F (2). It is easy to see that
limx↓x0 F (x) = F (x0) for all x0 ∈ R, i.e., that FX is right
continuous.

It is not, however, left continuous: If xi is an increasing sequence
with limi→∞ xi = 2, then limi→∞ F (xi ) = 1/6 6= 2/6 = F (2).
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Discrete Random Variables

A random variable is said to be discrete, and has a discrete
distribution if it takes on either a finite or countably infinite number
of values. Thus, r.v. X in the previous example is discrete.

If a discrete distribution (i.e., the pmf of a discrete r.v.) has support
only on a set of equidistant points, then it is more precise to refer to
it as a lattice distribution. Most of the discrete r.v.s one
encounters (and all of them herein) will have lattice distributions.

The probability mass function, or pmf, of discrete r.v. X is given
by fX (x) = f (x) = Pr (X = x).

The support S of r.v. X is most simply defined as the subset x ∈ R
such that fX (x) > 0.

Note that fX (x) = 0 for any x /∈ S and that the pmf sums to unity:∑
x∈S fX (x) = 1.

If there exists a number B > 0 such that |x | < B for all x ∈ SX ,
then X is said to have bounded support, otherwise, it has
unbounded support.

Marc S. Paolella Fundamental Probability: A Computational Approach 127



Basic Probability
Discrete Random Variables

Continuous Random Variables

Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

Definitions

If the cdf of r.v. X is absolutely continuous, i.e., there exists
function f such that, for all x ∈ R,

F (x) =

∫ x

−∞
f (t) dt and f (x) =

d

dx
F (x) =

d

dx

∫ x

−∞
f (t) dt,

then X is a continuous random variable and function f is denoted
a probability density function, or pdf, of X .

The median of a random variable X is any value m ∈ R such that
the two conditions

Pr (X ≤ m) ≥ 1

2
and Pr (X ≥ m) ≥ 1

2

are satisfied.

If there exists a pdf fX such that, for all a, fX (m + a) = fX (m − a),
then density fX (x) and random variable X are said to be symmetric
about m. This is equivalent to the condition that
Pr (X ≤ m − a) = Pr (X ≥ m + a) for all a.
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Example of a Continuous r.v.

If X follows a standard normal distribution, then its pdf is

fX (x ; 0, 1) = (2π)−1/2 exp

{
−x2

2

}
,

while the more general form, sometimes referred to as the Gaussian
distribution, is given by

fN (x ;µ, σ) =
1√
2πσ

exp

{
−1

2

(
x − µ
σ

)2
}
.

It is easy to see that fX
(
x ;µ, σ2

)
is symmetric about µ, which is

also its median.
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Example of a Continuous r.v. (2)

Now let X follow an exponential distribution. Its pdf is

fX (x ;λ) = λ exp {−λx} I[0,∞) (x)

with λ ∈ R>0. The cdf is

FX (x ;λ) =

∫ x

0

λ exp {−λt} dt = 1− exp {−λx} ,

so that the median is given by the solution to

1/2 = 1− exp {−λx} ,

or x = λ−1 ln 2.
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Discrete Sampling Schemes

Assume that objects are consecutively and randomly drawn from a
known population, either with or without replacement.

We assume that each element is equally likely to be drawn.

If a sampling scheme were desired in which Ω = {red,white, blue}
and such that red is 1.4 times as likely as either white or blue, then
an urn with 14 red, 10 white and 10 blue marbles could be used.

For both sampling schemes, either a fixed number of draws, n, is set
in advance, ...

or trials continue until given numbers of objects from each class are
obtained. This gives rise to four possible sampling schemes.

For the common univariate r.v.s, the population consists of only two
different distinguishable elements, labeled “success” and “failure”.
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Bernoulli

A Bernoulli r.v. X has support {0, 1} and takes on the value one
(“success”) with probability p or zero (“failure”) with probability
1− p. The mass function is

Pr (X = x) =

{
p, if x = 1,
1− p, if x = 0,

and zero otherwise.

By using the indicator function, the pmf can be written as

Pr (X = x) = fX (x) = px (1− p)1−x I{0,1} (x) .

Only a single draw, therefore: no need to specify whether trials are
conducted with or without replacement.

For notational convenience, the abbreviation X ∼ Ber (p) means
“the random variable X is Bernoulli distributed with parameter p”.
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Binomial

If an urn contains N white and M black marbles, and n of them are
randomly withdrawn with replacement, then X = the number of
white marbles drawn is a random variable with a binomial
distribution.

Letting p = N/ (N + M) be the probability of drawing a white one
(on any and all trials), we write X ∼ Bin (n, p) with pmf

fX (x) = fBin (x ; n, p) =

(
n

x

)
px (1− p)n−x I{0,1,...,n} (x) .

This follows from the independence of trials and noting that there
are
(
n
x

)
possible orderings with x white and n − x black marbles.
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Example

Imagine a tournament between A and B in which rounds, or games,
are repeatedly played against one another.

Assume the probability that, in a particular round, A wins is 0.3,
that B wins is 0.2, and that a tie results is 0.5.

If 10 rounds are played, the probability that there are exactly 5 ties
can be computed by noting that the number of ties is binomial with
p = 0.5 and n = 10, yielding(

10

5

)
0.550.55 =

252

1024
≈ 0.246.
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Useful result

Consider a fixed number of trials with replacement, but with
possibly more than two possible outcomes.

Let Ai be the event that outcome type i , i = 1, 2, occurs on any
particular trial. Then, in a sequence of trials, the probability that A1

occurs before A2 occurs is given by

Pr (A1)

Pr (A1) + Pr (A2)
.

If there are only two possible outcomes for each trial, then this
reduces to just Pr (A1).

Example Persons A and B conduct their tournament in a “sudden death”
manner. The probability that A wins a particular round is 0.3, that
B wins is 0.2, and that a tie results is 0.5. The probability that A
wins the tournament is then 0.3/ (0.3 + 0.2) = 0.6 from the previous
formula.
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Example: Continued

What if, instead of sudden death, they play 20 rounds. What is the
probability that A won 7 rounds, given that 10 of 20 ended in a tie?

Similarly, the answer follows from the binomial quantity(
10
7

)
(0.6)7 (0.4)3 ≈ 0.215.

Alternatively, the conditional probability is given by

Pr (A wins 7 ∩ B wins 3 ∩ 10 ties)

Pr (10 ties in 20 rounds)
.

Note that the numerator is similar to binomial probabilities, but
there are three possible outcomes on each trial instead of just two.
Generalizing in an obvious way,

Pr (A wins 7 ∩ B wins 3 ∩ 10 ties)

Pr (10 ties in 20 rounds)
=

(
20

7,3,10

)
(0.3)7 (0.2)3 (0.5)10(

20
10

)
(0.5)20

which reduces to
(

10
7

)
(0.6)7 (0.4)3 ≈ 0.215.

This is actually a special case of the multinomial distribution.
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Hypergeometric

An urn contains N white and M black balls.

n balls are randomly withdrawn without replacement.

X = the number of white balls drawn is a random variable with a
hypergeometric distribution.

We write X ∼ HGeo (N,M, n) with

fHGeo (x ; N,M, n) =

(
N
x

)(
M

n−x
)(

N+M
n

) I{max(0,n−M),1,...,min(n,N)} (x) .

The range of x follows from the constraints in the two numerator
combinatorics, i.e., 0 ≤ x ≤ N together with
0 ≤ n − x ≤ M ⇔ n −M ≤ x ≤ n.

These are very intuitive: If N = M = 5 and n = 6, then x has to be
at least one and can be at most five.

That
∑

x fX (x) = 1 follows directly from Appendix A.

Notice that, on any trial i , i = 1, . . . , n, the probability of drawing a
white ball depends on the outcomes of trials 1, 2, . . . , i − 1.
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Exercise

In a certain village, there are n young men and n young women who are
available for marriage. A plague strikes, randomly killing d of the 2n
young people, 0 < d < 2n. Let X be the number of possible marriages
which can occur after the plaque.

First start with n = 3 and d = 2, and show that Pr (X = 1) = 2/5,
Pr (X = 2) = 3/5, and Pr (X = x) = 0 for x /∈ {1, 2}.
Derive the p.m.f. of X for general n and d , and be sure to work out
the support of X .

Finally, write a Matlab program which simulates “the plague” to
help confirm your algebraic results.
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Solution

The event X = x is the same as “there are exactly x remaining men,
and at least x remaining women, or visa versa”.

Working with the former option, there are
(

n
n−x
)

ways of choosing
n− x men for death (so that x remain), and thus d − (n − x) women
have to die, which there are

(
n

d−(n−x)

)
ways. This would imply that

Pr (X = x)
?
= 2

(
n

n−x
)(

n
d−(n−x)

)(
2n
d

) , (6)

where the factor of two enters because of the “visa versa” role of
men and women.

However, in the simple case with n = 3 and d = 2 worked out
above, (6) yields Pr (X = 1) = 2/5, which is correct, but
Pr (X = 2) = 6/5, which is off by a factor of two. We return to this
after we work out the support of X .
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Solution (2)

From the two combinatorics in the numerator of (6), e.g., for the
latter, we require that d − (n − x) ≥ 0 and n ≥ d − (n − x), we see
that

0 ≤ x ≤ n and n − d ≤ x ≤ 2n − d .

However, there is another constraint: Recall that event X = x
implies that there are least x remaining women, i.e.,
n − [d − (n − x)] ≥ x , or x ≤ (2n − d) /2.

Combining these, we see that the support of X is

SX =

{
x ∈ N : max (0, n − d) ≤ x ≤ 2n − d

2

}
. (7)

Marc S. Paolella Fundamental Probability: A Computational Approach 140



Basic Probability
Discrete Random Variables

Continuous Random Variables

Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

Solution (3)

If d is even, then x can be exactly (2n − d) /2, whereas when d is
odd, x can be at most (2n − d − 1) /2.
For d even and x at its maximum of x = (2n − d) /2, this means
that an equal number, d/2, of men and women are killed, so we do
not have to take into account the “visa versa” in the description of
event X = x above.

Putting all this together, we get

fX (x) = ISX (x)

(
n

n−x
)(

n
d−(n−x)

)(
2n
d

) ×
{

1, if d is even and x = 2n−d
2 ,

2, otherwise,

where SX is given in (7).
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Matlab Solution (1)

This function simulates one plague.

function pairs=bernoullijar(n,d)

% n indistinguishable black and n indistinguishable white

% balls in an urn, remove d of them.

% This simulates how many black/white pairs are left.

jar=[ones(n,1); 2*ones(n,1)];

% Our jar, or urn, contains n ones, and n twos

rem=2*n; % how many balls remaining in the jar

for i=1:d % take d of them out

w=unidrnd(rem,1,1); % random number (index) between 1 and rem

jar=[jar(1:w-1) ; jar(w+1:end)]; % remove that ball

rem=rem-1; % and so there is one less ball in the jar

end

pairs = min( sum(jar==1), sum(jar==2) );

% possible number of black/white pairs

% is dictated by minimum of the two.
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Matlab Solution (2)

The following code can be used to compare the empirical and true
probabilities.

n=12; d=14; sim=1e5; pairs=zeros(sim,1);

for i=1:sim

pairs(i)=bernoullijar(n,d);

end, tabulate(pairs)

lo=max(0,n-d); hi=floor((2*n-d)/2);

p=[]; for x=lo:hi; p=[p C(n,n-x)*C(n,d-n+x) ]; end

p=2*p/C(2*n,d);

if d==2*(floor(d/2)) % in which case, it is even

p(end)=p(end)/2;

end

true_prob_times_100 = [lo:hi ; 100*p]
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Sample Output

true_prob_times_100 = [lo:hi ; 100*p]

Value Count Percent

0 4 0.00%

1 265 0.27%

2 3417 3.42%

3 17840 17.84%

4 46377 46.38%

5 32097 32.10%

true_prob_times_100 =

0 1.0000 2.0000 3.0000 4.0000 5.0000

0.0067 0.2692 3.3315 17.7682 46.6415 31.9828
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Geometric

The random variable X follows a geometric distribution with
parameter p ∈ (0, 1) and pmf

fGeo(x ; p) = p (1− p)x I{0,1,... } (x)

if it represents the number of “failed” Bernoulli trials required until
(and not including) a “success” is observed.

This is denoted X ∼ Geo (p).

Alternatively, X can be defined as the number of trials which are
observed until (and including) the first “success” occurs, i.e.,

fX (x ; p) = p (1− p)x−1 I{1,2,... } (x) .

Recall the example in which your colleague will keep having children
until the first son. The total number of children can be modeled
with this mass function. With p = 0.5, there is a 1 in 16 chance
that she will have more than four children.
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Negative Binomial

A generalization of the geometric is the negative binomial, which
represents the number of “failures” observed until r “successes” are
observed.

For X ∼ NBin (r , p), the pmf of X is given by

fNBin (x ; r , p) = Pr (X = x) =

(
r + x − 1

x

)
pr (1− p)x I{0,1,...} (x)

Function fNBin (x ; r , p) takes its form from the independence of trials

and noting that the (r + x)th trial must be a success and that r − 1
successes must occur within the first r + x − 1 trials.
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Inverse Hypergeometric

The 4th sampling scheme is for when trials continue until k
“successes” are obtained, but sampling is without replacement.

This is referred to as the inverse hypergeometric distribution and
arises in many useful applications.

If an urn contains w white and b black balls, the probability that a
total of x balls need to be drawn to get k white balls, 1 ≤ k ≤ w , is
given by

Pr (X = x) =

(
x − 1

k − 1

)(w+b−x
w−k

)(
w+b
w

) I{k,k+1,...,b+k} (x) , 1 ≤ k ≤ w ,

denoted X ∼ IHyp (k,w , b).
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Inverse Hypergeometric (2)

To see this for general k and x , where 1 ≤ k ≤ w and
k ≤ x ≤ b + k , the x th draw must be the k th white ball, while the
previous x − 1 trials must have produced k − 1 white balls and x − k
black balls (in any order).

This latter requirement is hypergeometric; thus,

Pr (X = x) =
w − (k − 1)

w + b − (x − 1)

(
w

k−1

)(
b

x−k
)(

w+b
x−1

)
which, upon rewriting, is precisely the pmf above.
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Poisson

For λ > 0, density of X ∼ Poi (λ) is

fPoi (x ;λ) = Pr (X = x | λ) =
e−λλx

x!
I{0,1,... } (x) .

There is no obvious sampling scheme which gives rise to this
distribution. Instead, it turns out that all four previous schemes (and
many others) asymptotically behave like a Poisson.

It is often an accurate approximation involving far less computation.

Consider the binomial. If X ∼ Bin (n, p) and np = λ, then

Pr (X = x) =

(
n

x

)
px (1− p)n−x =

n!

(n − x)!x!

(
λ

n

)x (
1− λ

n

)n−x

=
n (n − 1) · · · (n − x + 1)

nx︸ ︷︷ ︸
→1

λx

x!

(
1− λ

n

)n

︸ ︷︷ ︸
→e−λ

(
1− λ

n

)−x
︸ ︷︷ ︸

→1

,

as n→∞ and p → 0, so that, for large n and small p,
Pr (X = x) ≈ e−λλx/x!.
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Example

A new border patrol is set up to inspect 1000 cars a day. If it is
known that the probability of finding a violator of some sort is 0.001,
we can approximate the binomial r.v. X , the number of violators
caught, as a Poisson with λ = np = 1.

The probability of finding at least three violators is then
approximately

1−
(

e−110

0!
+

e−111

1!
+

e−112

2!

)
= 1− 5

2
e−1 ≈ 0.0803014.

The exact answer is 0.0802093.
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Moments: Expected Value

For convenience, define the integral

∫ ∞
−∞

g (x) dFX (x) =


∫
S g (x) fX (x) dx , if X is continuous,∑

i∈S
g (xi ) fX (xi ) , if X is discrete,

(assuming the right hand side exists), where S is the support of X and
g (x) is a real-valued function.

The expected value of random variable X is

µ = E [X ] =

∫ ∞
−∞

x dFX (x) .
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Moments: Examples

For the geometric distribution

fGeo(x ; p) = p (1− p)x I{0,1,... } (x)

with q = 1− p,

E [X ] =
∞∑
x=0

xfX (x) = p
∞∑
x=0

xqx =: pS1,

where

S1 = q + 2q2 + 3q3 + · · ·
qS1 = q2 + 2q3 + 3q4 + · · ·

S1 − qS1 = q + q2 + q3 + · · · =
q

1− q

so that

S1 =
q

(1− q)2 , E [X ] = pS1 =
1− p

p
.
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Moments: Examples (2)

For binomial, negative binomial, hypergeometric and inverse
hypergeometric, there exist far more expedient ways of evaluating
the mean.

The mean for X ∼ Bin (n, p) will be shown later to be E [X ] = np.

If X ∼ Poi (λ), then

E [X ] =
∞∑
x=0

xe−λλx

x!
=
∞∑
x=1

e−λλx

(x − 1)!
= λe−λ

∞∑
x=1

λx−1

(x − 1)!
= λ.

This value should not be surprising given the relationship between
the binomial and Poisson.
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Moments

Let g (X ) be a real–valued function of r.v. X , so that Y = g (X ) is
itself a random variable.

To compute E [g (X )], one could first obtain the density of g (X )
and then use the definition of expected value above.

However, it can be shown that

E [g (X )] =

∫
SX

g (x) dFX (x) ,

i.e., a direct computation is possible without having to first compute
the density fY .
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Moments

By taking Y = g (X ) = X r , the r th raw moment of r.v. X is
defined as

µ′r = E [X r ] =

∫
S

x r dFX (x) ,

while the r th central moment of X is defined by

µr = E
[
(X − µ)r

]
=

∫
S

(X − µ)r dFX (x) ,

recalling that µ = E [X ].

The second central moment, µr , plays an important role in many
statistical models and is referred to as the variance of X :

µ2 = Var (X ) =

∫
S

(x − µ)2 dFX (x) = µ′2 − µ2

and often denoted by σ2.

The standard deviation of a r.v. is defined to be σ :=
√
µ2.
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Moments: Example

Using geometric pmf

fX (x ; p) = p (1− p)x−1 I{1,2,... } (x) ,

the 2nd raw moment E
[
X 2
]

is

E
[
X 2
]

=
∞∑
x=1

x2fX (x) = p
∞∑
x=1

x2qx−1 = p
∞∑
x=1

x2qx−1 =: pS2,

where

S2 = 1 + 4q + 9q2 + 16q3 + · · ·+ x2qx−1 + · · ·
qS2 = q + 4q2 + 9q3 + · · ·+ (x − 1)2 qx + · · ·

S2 − qS2 = 1 + 3q + 5q2 + 7q3 + · · ·+ (2x − 1) qx−1 + · · ·

=
∞∑
i=0

(2i + 1) qi = 2S1 +
∞∑
i=0

qi = 2
q

(1− q)2 +
1

1− q
.
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Moments: Example (2)

Therefore

S2 = 2
q

(1− q)3 +
1

(1− q)2 =
1 + q

(1− q)3 ,

so that

E
[
X 2
]

=
2− p

p2

and

Var (X ) =
2− p

p2
−
(

1

p

)2

=
1− p

p2
,

which holds for both geometric pmf forms because
Var (X − 1) = Var (X ).
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Moments

A common measure of the extent to which a pdf deviates from

symmetry is µ3/µ
3/2
2 , called skewness

The kurtosis measures the heaviness of the tails of the
distribution, and is given by µ4/µ

2
2.

Raw and central moments of X (if they exist) are related by

µn = E
[
(X − µ)n

]
= E

[
n∑

i=0

(
n

i

)
X n−i (−µ)i

]

=
n∑

i=0

(
n

i

)
E
[
X n−i] (−µ)i =

n∑
i=0

(−1)i
(

n

i

)
µ′n−iµ

i

and µ′n given similarly by

E
[
(X − µ+ µ)n

]
= E

[
n∑

i=0

(
n

i

)
(X − µ)n−i µi

]
=

n∑
i=0

(
n

i

)
µn−iµ

i .
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Moments

For low order moments, these simplify to

µ′2 = µ2 + µ2, µ2 = µ′2 − µ2,

µ′3 = µ3 + 3µ2µ+ µ3, µ3 = µ′3 − 3µ′2µ+ 2µ3,

µ′4 = µ4 + 4µ3µ+ 6µ2µ
2 + µ4, µ4 = µ′4 − 4µ′3µ+ 6µ′2µ

2 − 3µ4,

using µ′ = µ and µ1 = 0.

Not all random variables possess finite moments of all order;
examples include the Pareto and Student’s t distributions.
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Jensen’s Inequality

A function f is (strictly) concave on [a, b] if

∀x , y ∈ [a, b] and ∀s ∈ [0, 1] with t = 1− s,

f (sx + ty) > sf (x) + tf (y).

Function f is convex on [a, b] iff −f is concave on [a, b].

In particular, a (possibly piecewise) differentiable function f is
concave on an interval if its derivative f ′ is non-increasing on that
interval; a twice-differential function f is concave on an interval if
f ′′ ≤ 0 on that interval.

Jensen’s inequality states that, for any r.v. X with finite mean,

E [g (X )] ≥ g(E[X ]), g(·) convex,

E [g (X )] ≤ g(E[X ]), g(·) concave.
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Jensen’s Inequality: Graphic Illustration

x y

f(x)

f(y) f(sx+(1−s)y)

sf(x)+(1−s)f(y)
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Jensen’s Inequality: Intuition from the Graphic

Let X ∼ Unif(0, 1) and consider the concave function

g (x) =

{
3x , if x ≤ 1/3,
1, if x > 1/3.

Then g(E[X ]) = 1 and E[g(X )] =
∫ 1/3

0
3x dx +

∫ 1

1/3
dx = 5/6, i.e.,

E[g(X )] < g(E[X ]).

0 1/2 1

1
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Jensen’s Inequality (cont.)

Let’s verify Jensen’s inequality for g convex and assuming g ′′ (x)
exists with g ′′ (x) ≥ 0 for all x .

We wish to show E [g (X )] ≥ g(E[X ]).

Let X be a r.v. with finite mean µ. Then, for g a twice
differentiable, convex function, there exists a value ξ such that

g (x) = g (µ) + g ′ (µ) (x − µ) +
1

2
g ′′ (ξ) (x − ξ)2

.

That is, g (x) ≥ g (µ) + g ′ (µ) (x − µ) for all x .

Thus, g (X ) ≥ g (µ) + g ′ (µ) (X − µ).

Take expectations of both sides.
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Jensen’s Inequality (cont.)

Example: Assume X is a r.v. with finite mean µ. Let g (x) = x2

with g ′′ (x) = 2, so that g is convex. Then E
[
X 2
]
≥ µ2. Note: if

E
[
X 2
]
<∞, then E

[
X 2
]

= V (X ) + µ2, which shows the result
immediately.

Example: Let X be a nonnegative r.v., and take g (x) =
√

x . As
g ′′ (x) is negative for x > 0, g is concave and E[

√
X ] ≤ √µ.

Note: As

0 ≤ V(
√

X ) = E[|X |]− (E[
√

X ])2 = E[X ]− (E[
√

X ])2,

the result follows immediately.

Example: Let g (x) = ln (x) for x > 0. Then g is concave because
g ′′ (x) = −x−2 and E [ln X ] ≤ lnµ.
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Jensen’s Inequality: Exercise

Let X be a positive random variable. What can you say about the
relative magnitudes of E [1/X ] and 1/E [X ]?

By computing Cov
(
X ,X−1

)
, derive an exact expression for their

difference.
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Jensen’s Inequality: Solution

As the function f (x) = 1/x is convex, Jensen’s inequality implies
E [1/X ]− 1/E [X ] > 0.

With µ = E [X ], we have

Cov
(
X ,X−1

)
= E

[
(X − µ)

(
X−1 − E

[
X−1

])]
= E

[
1− XE

[
X−1

]
− µX−1 + µE

[
X−1

]]
= 1− µE

[
X−1

]
,

so that
Cov (X , 1/X )

E [X ]
=

1

E [X ]
− E

[
X−1

]
;

and it is intuitively clear that Cov (X , 1/X ) < 0.
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Utility Functions, Jensen’s Inequality and FSD

(Example A.12). In microeconomics, a utility function, U (·), is a
preference ordering for different goods of choice (“bundles” of goods and
services, amount of money, etc.) For example, if bundle A is preferable to
bundle B, then U (A) > U (B).

Let U : A→ R, A ⊂ R>0, be a continuous and twice differentiable utility
function giving a preference ordering for overall wealth, W . Not
surprisingly, one assumes that U ′ (W ) > 0, i.e., people prefer more wealth
to less, but also that U ′′ (W ) < 0, i.e., the more wealth you have, the
less additional utility you reap upon obtaining a fixed increase in wealth.

In this case, U is a concave function and the person is said to be
risk-averse.
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Utility Functions, Jensen’s Inequality and FSD

A popular choice of U is U (W ; γ) = W 1−γ/ (1− γ) for a fixed
parameter γ ∈ R>0 \ 1 and W > 0.

Indeed, an easy calculation verifies that U ′ (W ) > 0 and U ′′ (W ) < 0.

Interest centers on the limit of U as γ → 1. In this case,
limγ→1 W 1−γ = 1 and limγ→1 (1− γ) = 0 so that l’Hôpital’s rule is not
applicable.

However, as utility is a relative measure, we can let
U (W ; γ) =

(
W 1−γ − 1

)
/ (1− γ) instead. Then, from Example A.11,

(d/ dγ) W 1−γ = −W 1−γ ln W , so that

lim
γ→1

U (W ; γ) = lim
γ→1

W 1−γ − 1

1− γ

= lim
γ→1

(d/ dγ)
(
W 1−γ − 1

)
(d/ dγ) (1− γ)

= lim
γ→1

W 1−γ ln W = ln W .
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Utility Functions, Jensen’s Inequality and FSD

(Example 4.30). Let U(W ) be a twice–differentiable, concave function of
wealth W , i.e., U ′(W ) > 0 and U ′′(W ) < 0.

Letting A be a random variable associated with the payoff of a financial
investment, Jensen’s inequality implies that E[U(A)] ≤ U(E[A]).

The intuition behind this result is that a risk-averse person (one for whom
U ′′(W ) < 0) prefers a sure gain of zero (the utility of the expected value
of zero) to taking a fair bet (win or lose x dollars with equal probability).
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Utility Functions, Jensen’s Inequality and FSD

(Example 4.21). Let A be a continuous random variable with support
S ⊂ R which describes the value (cash payoff) of a certain financial
investment, so that FA (x) is the probability of making less than or equal
to x (say) dollars.

Similarly, let B be a r.v. referring to the payoff of a different investment.
If, for every x ∈ S , FA (x) ≤ FB (x), then investment A is said to first
order stochastically dominate investment B, or A FSD B, and A would
be preferred by all (rational) investors.

This is because, for any x ∈ S , Pr (A > x) ≥ Pr (B > x), i.e., the
probability of making more than x dollars is higher with investment A, for
all possible x .
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Utility Functions, Jensen’s Inequality and FSD

As a trivial example, if investments A and B are such that A = B + k,
k > 0, then clearly, A is to be preferred, and indeed, A FSD B, because

FB (x) = Pr (B ≤ x) = Pr (A ≤ x + k) = FA (x + k) ≥ FA (x) ,

using the fact that F is a nondecreasing function.

Similarly, if the support of A and B is positive and if A = Bk, k > 1,
then FB (x) = Pr (B ≤ x) = Pr (A ≤ xk) = FA (xk) ≥ FA (x).
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Utility Functions, Jensen’s Inequality and FSD

Use of the exponential distribution with different parameters is a special
case of the latter result, recalling that the parameter in the exponential
distribution is an (inverse) scale parameter.

In particular, if 0 < λ1 < λ2 <∞, then it is easy to see that, ∀ x > 0,
e−λ1x > e−λ2x or 1− e−λ1x < 1− e−λ2x , so that, if Xi ∼ Exp (λi ),
i = 1, 2, then, ∀ x > 0, FX1 (x) < FX2 (x), and X1 FSD X2.

A distribution with finite support might make more sense in this context:
Let Xi ∼ Beta (p, qi ), i = 1, 2, with 0 < q1 < q2. A graphical analysis
suggests that FX1 (x) < FX2 (x) ∀ x ∈ (0, 1) and any p > 0 . The reader
is invited to prove this, or search for its proof in the literature.
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Utility Functions, Jensen’s Inequality and FSD

Let U (W ) be a wealth utility function as in Example A.12 and let
E [U (A)] be the expected utility of the return on investment A.

If A FSD B, then one might expect that E [U (w + A)] ≥ E [U (w + B)]
for any increasing utility function and any fixed, initial level of wealth w .

This is easily proven when U is differentiable, with U ′ (W ) > 0, and A
and B are continuous r.v.s.

Marc S. Paolella Fundamental Probability: A Computational Approach 173



Basic Probability
Discrete Random Variables

Continuous Random Variables

Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

Utility Functions, Jensen’s Inequality and FSD

First note that, if A FSD B, then (w + A) FSD (w + B), so we can take
w = 0 without loss of generality. Let interval (a, b) be the union of the
support of A and B.

Integrating by parts shows that∫ b

a

U (x) fA (x) dx = U (b) FA (b)− U (a) FA (a)−
∫ b

a

FA (x) U ′ (x) dx

= U (b)−
∫ b

a

FA (x) U ′ (x) dx ,

as FA (b) = 1 and FA (a) = 0.
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Utility Functions, Jensen’s Inequality and FSD

Similarly,
∫ b

a
U (x) fB (x) dx = U (b)−

∫ b

a
FB (x) U ′ (x) dx , so that

E [U (A)]− E [U (B)] =

∫ b

a

U (x) fA (x) dx −
∫ b

a

U (x) fB (x) dx

=

∫ b

a

[FB (x)− FA (x)] U ′ (x) dx ≥ 0,

which follows because U ′ (x) > 0 and FB (x) > FA (x) by assumption.
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Course Outline
1 Basic Probability

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

2 Discrete Random Variables
Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

3 Continuous Random Variables
Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations
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Multivariate Random Variables

Most real statistical applications involve several random variables,
because

1 more than one random quantity is associated or observed in
conjunction with the process of interest or

2 the variable(s) of interest can be expressed as functions of two or
more (possibly unobserved) random variables.

Similar to the univariate case, the n-variate vector function

X = (X1,X2, . . . ,Xn) = (X1 (ω) ,X2 (ω) , . . . ,Xn (ω)) = X (ω)

is defined to be a (multivariate or vector) random variable.
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Joint CDF

The joint cdf of X is denoted FX (·) and defined to be the function
with domain Rn and range [0, 1] given by

FX (x) = Pr (X ≤ x) := Pr (−∞ < Xi ≤ xi , i = 1, . . . , n)

for any x ∈ Rn, where vector inequalities are defined to operate
elementwise on the components.

The multivariate cdf has properties similar to the univariate case,
but with one additional constraint. In the bivariate case, this is

F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2) ≥ 0,

and in the trivariate case,

F (b1, b2, b3)− F (a1, b2, b3)− F (b1, a2, b3)− F (b1, b2, a3)

+F (a1, a2, b3) + F (a1, b2, a3) + F (b1, a2, a3)− F (a1, a2, a3) > 0,

with expressions available for the general case.
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Multivariate PMF and PDF

Similar to the univariate case, X is discrete if it has a finite or
countably infinite support, and is continuous otherwise.

The multivariate pmf of discrete X is given by

fX (x) = Pr ({ω}) = Pr (ω : ω ∈ Ω | Xi (ω) = xi i = 1, . . . , n) ,

with fX (x) = 0 for any X (ω) /∈ S and

1 =
∑
ω∈S

fX ({ω}) =
∞∑

j1=−∞

∞∑
j2=−∞

· · ·
∞∑

jn=−∞

Pr (X1 = j1, . . . ,Xn = jn) .

For continuous X, fX (x) is the multivariate pdf if, for all A ∈ Bn,

Pr (X ∈ A) =

∫
· · ·
∫

A

fX (x) dx

and
∫
Rn fX (x) dx = 1.
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Multivariate PMF and PDF

In the continuous bivariate case,

fX ,Y (x , y) =
∂2FX ,Y (x , y)

∂x∂y
,

with the extension to n random continuous variables X1, . . . ,Xn

analogously given.

A typical event is when A is a rectangle in Rn, i.e.,

A = {x : ai < xi ≤ bi , i = 1, . . . , n} ,

so that

Pr (X ∈ A) =

∫ b1

a1

· · ·
∫ bn

an

fX (x) dxn · · · dx1,

which should be viewed as an iterated integral, i.e., it is to be
evaluated from the innermost univariate integral outwards, holding
x1, . . . , xn−i constant when evaluating the i th one.
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Example

Let (X ,Y ,Z ) be jointly distributed with density

fX ,Y ,Z (x , y , z) = k xy exp

(
−x + y + z

3

)
I(0,∞) (x) I(0,∞) (y) I(0,∞) (z) .

Note that, for constants a and b, b > 0∫ ∞
0

exp (−a− bz) dz = e−a
∫ ∞

0

exp (−bz) dz = e−a
1

b
.
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Example (2)

Thus, the constant k is determined by

1 = k

∫ ∞
0

∫ ∞
0

∫ ∞
0

xy exp

(
−x + y + z

3

)
dz dy dx

= k

∫ ∞
0

∫ ∞
0

xy

∫ ∞
0

exp

(
−x + y + z

3

)
dz dy dx

= k

∫ ∞
0

∫ ∞
0

xy
(

e−
1
3 (x+y) × 3

)
dy dx

= 3k

∫ ∞
0

x

(∫ ∞
0

ye−
1
3 (x+y) dy

)
dx

= 3k

∫ ∞
0

xe−x/3 dx

∫ ∞
0

ye−y/3 dy = 3k × 92 = 243k.

For Pr (X < Y < Z ), there are 3! integral expressions, three of which are

1
∫∞

0

∫∞
x

∫∞
y

fX ,Y ,Z (x , y , z) dz dy dx = 7
108 ,

2
∫∞

0

∫ z

0

∫ y

0
fX ,Y ,Z (x , y , z) dx dy dz = 7

108 ,
3
∫∞

0

∫∞
x

∫ z

x
fX ,Y ,Z (x , y , z) dy dz dx = 7

108 .
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More General Events

Let A = {x : ai (xi−1) < xi ≤ bi (xi−1) , i = 1, . . . , n}, where
xj := (x1, . . . , xj), i.e., bounds ai and bi are functions of x1, x2, . . . , xi−1.

Example Let fX ,Y (x , y) = e−y I(0,∞) (x) I(x,∞) (y). That is, fX ,Y (x , y) > 0 if
and only if 0 < x < y <∞.

Then Pr (aX < Y ) = 1 for a ≤ 1 and, for a > 1,

Pr (aX < Y ) =

∫∫
ax<y

fX ,Y (x , y) dy dx =

∫ ∞
0

∫ ∞
ax

e−y dy dx

=

∫ ∞
0

e−ax dx =
1

a
, a > 1.

Exercise Repeat with dx dy instead of dy dx .
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More General Events

Example Let

fX ,Y (x , y) = abe−ax−by I(0,∞) (x) I(0,∞) (y)

= ae−axI(0,∞) (x)× be−by I(0,∞) (y) .

Then

Pr (X < Y ) =

∫ ∞
0

∫ ∞
x

fX ,Y (x , y) dy dx

=

∫ ∞
0

ae−ax
(∫ ∞

x

be−by dy

)
dx

=

∫ ∞
0

ae−ax (1− FY (x)) dx , FY (t) = 1− e−bt

=

∫ ∞
0

ae−axe−bx dx =

∫ ∞
0

ae−(a+b)x dx =
a

a + b
.

For a = b, Pr (X < Y ) = 1/2, as we would expect.
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Marginal Distributions

For a given n-variate cdf FX, interest often centers on only a subset
of {Xi , i = 1, . . . , n}.
The pdf (cdf) of this subset is referred to as the marginal density
(distribution) for the chosen subset.

There are a total of 2n − 2 marginal distributions.

In the bivariate (n = 2) continuous case, the marginal pdfs are

fX (x) =

∫ ∞
−∞

fX ,Y (x , y) dy , and fY (y) =

∫ ∞
−∞

fX ,Y (x , y) dx .

The marginal cdfs are

FX (x) =

∫ x

−∞

∫ ∞
−∞

fX ,Y (x , y) dy dx =

∫ x

−∞
fX (x) dx

FY (y) =

∫ y

−∞

∫ ∞
−∞

fX ,Y (x , y) dx dy =

∫ y

−∞
fY (y) dy .

The general case is treated similarly.
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Example

Let fX ,Y (x , y) = e−y I(0,∞) (x) I(x,∞) (y).
Then

fX (x) = I(0,∞) (x)

∫ ∞
x

e−y dy = e−xI(0,∞) (x) ,

so that X ∼ Exp (1).
With 0 < x < y <∞,

fY (y) = e−y
∫ y

0

dx = ye−y I(0,∞) (y) .

To check that this is a valid density, let u = y (so that du = dy)
and dv = e−y dy (so that v = −e−y ),∫ ∞

0

ye−y dy =

∫
u dv = uv −

∫
v du

= −ye−y
∣∣∞
0
−
∫ (
−e−y

)
dy

= 0 + 1.
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Independence

Informally, a set of r.v.s are independent if they have “nothing
whatsoever to do with one another”.

More formally, r.v.s X1, . . . ,Xn are said to be mutually
independent (or just independent) if, for all rectangles
Ia,b = I(a1,a2,...,an),(b1,b2,...,bn) for which ai ≤ bi , i = 1, . . . , n,

Pr (X ∈ I ) = Pr (X1 ∈ Ia1,b1 , . . . ,Xn ∈ Ian,bn) =
n∏

i=1

Pr (Xi ∈ Iai ,bi ) .

As a special case, this implies that the joint c.d.f. can be expressed
as FX (x) =

∏n
i=1 FXi (xi ).

This definition is equivalent with one in terms of the pdf of X: The
r.v.s X1, . . . ,Xn are independent iff their joint density can be
factored as

fX (x) =
n∏

i=1

fXi (xi ) .
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IID

If n random variables X1, . . . ,Xn are not only independent but each
follow the same distribution, i.e., FXi = FX , i = 1, . . . , n, for some
distribution FX , then X1, . . . ,Xn are said to be independently and
identically distributed, which is often abbreviated as iid.

This is expressed as Xi
iid∼ fX .

If the Xi are independent and described or indexed by the same
family of distributions but with different parameters, say θi , we write

Xi
ind∼ fXi (xi ; θi ).

To emphasize that the functional form of f is the same, use the

distributional name, e.g., Xi
ind∼ Ber (pi ).

Question: If Xi
iid∼ Ber (p), then how is

∑n
i=1 Xi distributed?

Question: If Xi
iid∼ Geo (p), then how is

∑n
i=1 Xi distributed?
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Moments

The expected value of a function g (X) for g : Rn → R, with respect
to the n-length vector random variable X with pmf or pdf fX is
defined by

E [g (X)] =

∫
x∈Rn

g (X) dFX (x) .

For example, if

fX ,Y (x , y) = abe−axe−by I(0,∞) (x) I(0,∞) (y)

for a, b ∈ R>0, then

E [XY ] = ab

∫ ∞
0

∫ ∞
0

xye−axe−by dx dy

= ab

∫ ∞
0

xe−ax dx

∫ ∞
0

ye−by dy =
1

ab
,

an easy calculation because X and Y are independent.
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Moments (2)

Often only a subset of the X are used in g so that the desired
expected value can be expressed in terms of the marginal density of
the subset. For example,

E
[
X 2
]

=

∫ ∞
0

∫ ∞
0

x2fX ,Y (x , y) dy dx

=

∫ ∞
0

x2

∫ ∞
0

fX ,Y (x , y) dy dx

=

∫ ∞
0

x2fX (x) dx =
2

a2
.
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Covariance

Interest often centers on the mean µi = E [Xi ] and variance

σ2
i = E

[
(Xi − µi )

2
]

of the individual components of X.

A generalization of the variance is the covariance: For any two Xi ,
the covariance is given by

σij := Cov (Xi ,Xj) = E [(Xi − µi ) (Xj − µj)] = E [XiXj ]− µiµj ,

where µi = E [Xi ], and is a measure of the linear association
between the two variables.
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Covariance (2)

If σij is positive, then, generally speaking, relatively large (small)
values of X1 tend to occur with relatively large (small) values of X2,
while, if σij < 0, then relatively small (large) values of X1 tend to
occur with relatively large (small) values of X2.

From symmetry, Cov (Xi ,Xj) = Cov (Xj ,Xi ).

Thus, for i 6= j , there are
(
n2 − n

)
/2 unique covariance terms

among n random variables.

If Xi and Xj are independent, then, for i 6= j ,

Cov (Xi ,Xj) = E [Xi − µi ] E [Xj − µj ] = 0.

So, the occurrence of relatively large or small values of X1 gives no
indication as to what to expect from X2.
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Correlation

If i = j , σii = Cov (Xi ,Xi ) = Var (Xi ) = σ2
i . The correlation of two

r.v.s is defined to be

Corr (Xi ,Xj) =
Cov (Xi ,Xj)√

Var (Xi )Var (Xj)
=

σij
σiσj

.

The covariance can, in general, be any value in R, because it
depends on the scaling and range of the r.v.s of interest.

The correlation is bound between −1 and 1 , with high positive
(negative) correlation associated with values near 1 (−1).

Clearly, Corr (Xi ,Xj) = 0 if Xi and Xj are independent.

The converse does not hold in general: A correlation (or covariance)
of zero does not necessarily imply that the two r.v.s are independent.
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Course Outline
1 Basic Probability

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

2 Discrete Random Variables
Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

3 Continuous Random Variables
Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations
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Mean and Variance of Sums of r.v.s

Let Y =
∑n

i=1 Xi , where the Xi are random variables. A very
important result is that

E [Y ] =
n∑

i=1

E [Xi ] .

Similarly,

Var (Y ) =
n∑

i=1

Var (Xi ) +
∑∑

i 6=j

Cov (Xi ,Xj)

with important special case

Var (Xi + Xj) = Var (Xi ) + Var (Xj) + 2Cov (Xi ,Xj) .
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Mean and Variance of Sums of r.v.s (2)

To show the result for the expectation when n = 2, let g (X) = X1 + X2.
Then

E [X1 + X2]

=

∫ ∞
−∞

∫ ∞
−∞

(x1 + x2) fX1,X2 (x1, x2) dx2 dx1

=

∫ ∞
−∞

∫ ∞
−∞

x1fX1,X2 (x1, x2) dx2 dx1 +

∫ ∞
−∞

∫ ∞
−∞

x2fX1,X2 (x1, x2) dx1 dx2

=

∫ ∞
−∞

x1

∫ ∞
−∞

fX1,X2 (x1, x2) dx2 dx1 +

∫ ∞
−∞

x2

∫ ∞
−∞

fX1,X2 (x1, x2) dx1 dx2

=

∫ ∞
−∞

x1fX1 (x1) dx1 +

∫ ∞
−∞

x2fX2 (x2) dx2

= E [X1] + E [X2] .

The result for n > 2 can be similarly derived; it also follows directly from
the n = 2 case by induction.
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Mean and Variance of Sums of r.v.s (3)

More generally,

E [X ] = E

[
n∑

i=1

aiXi

]
=

n∑
i=1

E [aiXi ] =
n∑

i=1

aiE [Xi ] =
n∑

i=1

aiµi

and

Var (X ) =
n∑

i=1

a2
i Var (Xi ) +

∑∑
i 6=j

aiaj Cov (Xi ,Xj) .

If X1 and X2 are uncorrelated and a1 = −a2 = 1,

Var (X1 − X2) = Var (X1) + Var (X2) .

The covariance between two r.v.s X =
∑n

i=1 aiXi and
Y =

∑m
i=1 biYi is

Cov (X ,Y ) =
n∑

i=1

m∑
j=1

aibj Cov (Xi ,Yj) .
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Random Variable Decomposition

A binomial random variable with parameters n and p can be
represented as a sum of n independent, Bernoulli distributed random
variables, each with parameter p.

That is, if X ∼ Bin (n, p), then X =
∑n

i=1 Xi , where Xi ∼ Ber (p),

i = 1, . . . , n, and Xi
iid∼ Ber (p).

As E [Xi ] = Pr (Xi = 1) = p for all i , it follows that E [X ] = np.

Similarly, Var (X ) = np (1− p), because Var (Xi ) = p (1− p).
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Random Variable Decomposition (2)

Likewise, X ∼ NBin (r , p) can be decomposed into r iid geometric
random variables, X1, . . . ,Xr , each with density

fX (x) = fGeo(x ; p) = p (1− p)x I{0,1,... } (x) .

We know that E [Xi ] = (1− p) /p and Var (Xi ) = (1− p) /p2, so
that E [X ] = r (1− p) /p and Var (X ) = r (1− p) /p2.

It follows that, if Xi
ind∼ Bin (ni , p), then X =

∑
i Xi ∼ Bin (n, p),

where n =
∑

i ni .

Also, if Xi
ind∼ NBin (ri , p), then X =

∑
i Xi ∼ NBin (r , p), where

r =
∑

i ri .

Marc S. Paolella Fundamental Probability: A Computational Approach 199



Basic Probability
Discrete Random Variables

Continuous Random Variables

Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

Exercise

Recall our village which gets hit by a plague. Now, consider the
adults: Before the plague, there are n married couples. The plague
randomly kills d of the 2n adults, 0 < d < 2n.
Let X be the number of married couples remaining.
According to Johnson and Kotz (1977, p. 23), Daniel Bernoulli
(1700–1782) proposed and answered this question around 1766.
Calculate the support of X , its pmf, E [X ] and V (X ). Also make a
program to simulate X , and thus compare the empirical and true
pmf, expected value, and variance.
Hint: To assist deriving the mean and variance, let

Bi = I (ith couple still intact) .
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Solution

First consider the support of X . If the d deaths are spread out such
that the largest number of couples are affected, then n − x (the
number of couples affected) can be as large as d (but not larger
than n), so that n − x ≤ min (n, d), or x ≥ n −min (n, d). For the
upper bound on X , observe that, if d is even, then we want that
d/2 couples are affected (and both the man and wife die), leaving
n − d/2 couples intact. If d is odd and X is to be as large as
possible, then there is one couple such that either the man or
woman, but not both, is dead, so it suffices to imagine that d is
d + 1, i.e., if d is odd, then the upper bound is n − (d + 1) /2.
Thus,

SX =

{
x ∈ N : n −min (n, d) ≤ x ≤ n −

⌈
d

2

⌉}
,

where dae is the ceiling of a, meaning that a is rounded off towards
positive infinity, e.g., d3.2e = d4e = 4.
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Solution (2)

In order for there to be x couples still intact, it must be the case
that n − x couples have lost either the man, or the woman, or both,
such that the total number of deaths is d . There are

(
n

n−x
)

=
(
n
x

)
ways of choosing which couples get affected (the “danger group”).
Concentrating now on this group, n − x of the d deaths must go to
eliminating either the man or woman, so there are 2n−x ways for this
to occur. Of the 2 (n − x) people in the danger group, n − x have
been eliminated, leaving n − x people to accommodate d − (n − x)
remaining deaths. There are

(
n−x

d−(n−x)

)
ways of doing this, but we

need to divide this quantity by 2d−(n−x) because they were implicitly
“ordered” by having considered the 2n−x factor.
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Solution (3)

Thus,

Pr (X = x) =
2n−x

2d−(n−x)

(
n
x

)(
n−x

d−(n−x)

)(
2n
d

) ISX (x) .

To compute the expected value from its definition appears difficult,
but from the hint, observe that X =

∑n
i=1 Bi , so that

E [X ] =
n∑

i=1

E [Bi ] = nE [B1] ,

and

E [B1] = Pr (B1 = 1) =

(
2n−2
d

)(
2n
d

) =
(2n − d) (2n − d − 1)

(2n) (2n − 1)
,

yielding

E [X ] =
(2n − d) (2n − d − 1)

2 (2n − 1)
=: t1.
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Solution (4)

For the variance, recall that V (X ) = E
[
X 2
]
− (E [X ])2, and

E
[
X 2
]

= E

( n∑
i=1

Bi

)2
 =

n∑
i=1

E
[
B2
i

]
+ 2

n∑
i=1

n∑
j=i+1

E [BiBj ]

= nE [B1] + n (n − 1)E [B1B2] ,

and

E [B1B2] = Pr (B1 = 1 and B2 = 1) =

(
2n−4
d

)(
2n
d

)
=

(2n − d) (2n − d − 1) (2n − d − 2) (2n − d − 3)

(2n) (2n − 1) (2n − 2) (2n − 3)
=: t2.

Putting all this together gives

V (X ) = E
[
X 2
]
− (E [X ])2 = t1 + n (n − 1) t2 − t2

1 .
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Matlab Solution (1)

function pairs=bernoullijar2(n,d)

%% n distinguishable black and n distinguishable white

%% balls in an urn. Each set is labeled 1..n.

%% Randomly remove d of them.

%% This simulates how many black/white pairs are left.

%

urn=[1:n , 1:n]; rem=2*n;

for i=1:d

w=unidrnd(rem,1,1); urn=[urn(1:w-1), urn(w+1:end)];

rem=rem-1;

end

s=0;

for i=1:n, s=s+(sum(urn==i)==2); end, pairs=s;

This can be used in conjunction with the following code:
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Matlab Solution (2)

n=5; d=4; sim=1e5; pairs=zeros(sim,1);

for i=1:sim, pairs(i)=bernoullijar2(n,d); end

tabulate(pairs)

lo=n-min(n,d); hi=n-ceil(d/2); p=[];

for x=lo:hi

p=[p 2^(n-x) / 2^(d-n+x) * C(n,x) * C(n-x,d-n+x)];

end

p=p/C(2*n,d);

true_prob_times_100 = [lo:hi ; 100*p]

empirical_mean=mean(pairs)

true_mean = (2*n-d)*(2*n-d-1)/2/(2*n-1)

t1=true_mean; a=(2*n-d); b=2*n;

t2=a*(a-1)*(a-2)*(a-3)/b/(b-1)/(b-2)/(b-3);

empirical_var=var(pairs)

true_var = t1+n*(n-1)*t2-t1^2
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Sample Output

Value Count Percent

1 38297 38.30%

2 56960 56.96%

3 4743 4.74%

true_prob_times_100 =

1.0000 2.0000 3.0000

38.0952 57.1429 4.7619

empirical_mean = 1.6645

true_mean = 1.6667

empirical_var = 0.3178

true_var = 0.3175
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Density and CDF of Sums of Random Variables

For the previous binomial and negative binomial cases, if the Xi are
still independent, but the pi differ, the results no longer hold.

In this case, the mass function of
∑

i Xi is more complicated. For
example, if Xi ∼ Bin (ni , pi ), i = 1, 2, then the mass function of
X = X1 + X2, or the convolution of X1 and X2, can be written as

Pr (X = x) =
n∑

i=0

Pr (X1 = i) Pr (X2 = x − i)

=
n∑

i=0

Pr (X1 = x − i) Pr (X2 = i) ,

where n = n1 + n2.

This makes sense because X1 and X2 are independent and, in order
for X1 and X2 to sum to x , it must be the case that one of the events
{X1 = 0, X2 = x}, {X1 = 1, X2 = x − 1}, . . ., {X1 = x , X2 = 0}
must have occurred. These events partition the event {X = x}.
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Density and CDF of Sums of Random Variables (2)

Similarly, the cdf of X = X1 + X2 is given by

Pr (X ≤ x) =
n∑

i=0

Pr (X1 = i) Pr (X2 ≤ x − i)

=
n∑

i=0

Pr (X1 ≤ x − i) Pr (X2 = i) .

This result extends to any two discrete independent random
variables, although if both do not have bounded support, the sums
will be infinite.

They can also be generalized to the sum of three, four, or more
(discrete and independent) random variables, but will then involve
double, triple, etc., sums and become computationally inefficient.
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Density and CDF of Sums of Random Variables (3)

Let Xi
ind∼ Poi (λi ) and let Y = X1 + X2.

With λ = λ1 + λ2,

Pr (Y = y) =
∞∑

i=−∞

Pr (X1 = i) Pr (X2 = y − i)

=

y∑
i=0

e−λ1λi1
i !

e−λ2λy−i2

(y − i)!
= e−(λ1+λ2)

y∑
i=0

λi1
i !

λy−i2

(y − i)!

=
e−(λ1+λ2)

y !

y∑
i=0

y !

i ! (y − i)!
λi1λ

y−i
2 =

e−(λ1+λ2)

y !
(λ1 + λ2)y

=
e−λλy

y !
,

where the second to last equality follows from the binomial theorem.

It follows that
∑n

i=1 Xi ∼ Poi (λ), where λ =
∑n

i=1 λi .
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Course Outline
1 Basic Probability

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

2 Discrete Random Variables
Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

3 Continuous Random Variables
Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations
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Introducing Continuous Univariate Random Variables

All phenomena are ultimately discrete; continuous distributions are
“natural approximations” which are used extensively.

When “meeting” a cont. dist. for the first time, consider:

1 Its theoretical importance.

2 Its use in applications.

3 How its functional form came about. For example, it might

be a “base” distribution arising from mathematical simplicity, e.g.,
the uniform or exponential;
arise or be strongly associated with a particular application, e.g., the
Cauchy in a geometrical context, the Pareto for income distribution,
the F in the analysis of variance;
be a “natural” or obvious generalization of a base distribution, such
as the beta or Weibull;
be a function of other, simpler r.v.s, such as gamma as a sum of
exponentials, or Student’s t as a ratio of normal and weighted χ2;
be a limiting distribution, such as the Poisson, normal and Gumbel.
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Introducing Continuous Univariate Random Variables

4 The extent to which certain characteristics can be easily ascertained
and/or computed, such as: the expected value and higher moments,
quantiles and the c.d.f..

5 Other properties of interest: unimodal? closed under addition?
member of the exponential family?

6 Recognizing what role the associated parameters play. Continuous
distributions often have a location parameter which shifts the
density and a scale parameter which stretches or shrinks the density.

7 Further parameters are referred to generically as shape parameters
but, for any particular distribution, often have standard names, e.g.,
the degrees of freedom for Student’s t. In some densities, there is a
parameter which is responsible for the skewness.

8 The behavior of the c.d.f. far into the tails of the distribution.
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Introducing Continuous Univariate Random Variables

Regarding the location and scale parameters just mentioned, if X is
a continuous random variable with p.d.f. fX (x), then the linearly
transformed random variable Y = σX + µ, σ > 0, has density

fY (y) =
1

σ
fX

(
y − µ
σ

)
,

to be derived later.
The distributions of X and Y are said to be members of the same
location-scale family, with location parameter µ and scale
parameter σ.

The kernel of a p.d.f. is that part of it which involves only the
variables associated with the r.v.s of interest, e.g., x .
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The Uniform and the Exponential Distribution

Some common univariate continuous distributions are:

1 uniform, Unif (a, b);

fUnif (x ; a, b) =
1

b − a
I(a,b) (x)

and

FUnif (x ; a, b) =
x − a

b − a
I[a,b] (x) + I[b,∞] (x) .

2 exponential, Exp(λ), λ ∈ R>0 with density and distribution function

fExp (x ;λ) = λ exp {−λx} I[0,∞) (x)

and
FExp (x ;λ) = 1− exp {−λx} ,

where λ is a scale parameter.
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The Gamma Distribution

3 gamma, Gam (α, β), α, β ∈ R>0; the density is given by

fGam (x ;α, β) =
βα

Γ (α)
xα−1 exp {−βx} I[0,∞) (x) ,

β is a scale parameter and, with α = 1, reduces to the exponential
distribution. The gamma c.d.f. is given by

FGam (x ;α, 1) = Γ̄x(α) :=
Γx (α)

Γ (α)
,

where Γx (a) =
∫ x

0
ta−1e−t dt is the incomplete gamma function.

The moments are straightforwardly shown to be

E
[
X k
]

=
Γ (k + α)

βkΓ (α)
, k > −α.

In particular, for k = 0, we see that the density integrates to one; for
k = 1, it follows that E [X ] = α/β; with k = 2,

Var (X ) = α (1 + α) /β2 − (α/β)2 = α/β2.
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The Beta Distribution

4 beta, Beta (p, q), p, q ∈ R>0;

fBeta (x ; p, q) =
1

B (p, q)
xp−1 (1− x)q−1 I[0,1] (x)

and

FBeta (x ; p, q) =
Bx (p, q)

B (p, q)
I[0,1] (x) + I(1,∞) (x) ,

where

Bx (p, q) = I[0,1] (x)

∫ x

0

tp−1 (1− t)q−1 dt

is the incomplete beta function.
If p = q = 1, the beta distribution reduces to Unif (0, 1).
The k th moment of X ∼ Beta (p, q) is easily derived:

E
[
X k
]

=
Γ (p + q)

Γ (p)

Γ (p + k)

Γ (p + k + q)
,

for k > −p.
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The Weibull Distribution

5 Weibull, W (β, x0, σ), β, σ ∈ R>0 and x0 ∈ R; the density of
W (β, x0, σ) is given by

fW (x ;β, x0, σ) =
β

σ

(
x − x0

σ

)β−1

exp

{
−
(

x − x0

σ

)β}
I(x0,∞) (x) ,

where x0 and σ are location and scale parameters.
With β = 1 and x0 = 0, W (β, x0, σ) reduces to the exponential
distribution.
The c.d.f. is closed form, and is given by

FW (x ;β, x0, σ) = 1− exp

{
−
(x − x0

σ

)β}
I(x0,∞) (x) .

For W (b, 0, s), substituting u = (x/s)b and simplifying gives

E [X p] = sp
∫ ∞

0

up/b exp {−u} du = spΓ
(

1 +
p

b

)
which exists for p > −b.
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The Laplace and the Cauchy Distribution

6 Laplace or double exponential, Lap (µ, σ) or DExp (µ, σ), µ ∈ R and
σ ∈ R>0; fLap (x ; 0, 1) = exp {− |x |} /2 and

FLap (x ; 0, 1) =
1

2

{
ex , if x ≤ 0,
2− e−x , if x > 0.

7 Cauchy, Cau (µ, σ), µ ∈ R and σ ∈ R>0; from

fCau (x ; 0, 1) =
1

π
· 1

1 + x2

and FCau (x ; 0, 1) = 1
2 + 1

π arctan (x). A simple calculation (see
example A.27) shows that the mean of a Cauchy r.v. does not exist.
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Pareto Distributions

8 Type I Pareto (or Pareto distribution of the first kind) Par I (α, x0),
α, x0 ∈ R>0;

fPar I (x ;α, x0) = αxα0 x−(α+1)I[x0,∞) (x)

and

FPar I (x ;α, x0) = 1−
(x0

x

)α
I[x0,∞) (x) .

The moments of X are given by

E [Xm] =

∫ ∞
−∞

xm fX (x) dx = αxα0

∫ ∞
x0

x−α−1+m dx

=
αxα0

m − α
xm−α∣∣∞

x0
=

α

α−m
xm

0 ,

for m < α, and do not exist for m ≥ α.
9 Type II Pareto, Par II (b), b ∈ R>0; the c.d.f. is

FPar II(x ; b) =

[
1−

(
1

1 + x

)b ]
I(0,∞)(x).
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Pareto and Power Tails

In various applications, the survivor function of r.v. X , defined by

F̄X (x) = 1− FX (x) = Pr (X > x) ,

is of particular interest.

For X ∼ Par I (α, x0), F̄ (x) = Cx−α, where C = xα0 .

Can be shown: The survivor function for a number of important
distributions is asymptotically of the form Cx−α as x increases,
where C denotes some constant.

If this is the case, we say that the right tail of the density is
Pareto–like or that the distribution has power tails.

Somewhat informally, if F̄X (x) ≈ Cx−α, then, as
d (1− Cx−α) / dx ∝ x−(α+1), the maximally existing moment of X
is bounded above by α.
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Exponential Tails (2)

For many distributions, all positive moments exist, such as for the
gamma and normal. These are said to have exponential tails.

For instance, if X ∼ Exp (λ), then F̄X (x) = e−λx .

While the normal c.d.f. (or that of any distribution with exponential
right tail) dies off rapidly, the c.d.f. with power tails tapers off slowly.

For power tails, they are so “thick” that the probability of extreme
events never becomes negligible.

This is why the expected value of X raised to a sufficiently large
power will fail to exist.
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The Normal Distribution

10 normal or Gaussian, N
(
µ, σ2

)
, µ ∈ R and σ ∈ R>0 with density

fN (x ;µ, σ) =
1√
2πσ

exp

{
−1

2

(
x − µ
σ

)2
}
.

While µ and σ are respectively the location and scale parameters, it
is standard convention to write N

(
µ, σ2

)
instead of N (µ, σ).

The normal distribution, sometimes referred to as the “bell curve”,
enjoys certain properties which render it the most reasonable
description for modeling a large variety of stochastic phenomena. As
such, it plays a central role in much of statistical analysis.
The first four moments are µ1 = E [X ] = µ, µ2 = Var (X ) = σ2,
µ3 = 0 and µ4 = 3σ4. An easy way of calculating these is given later.
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The Normal Distribution (2)

While the normal c.d.f. is not expressible in closed form, the survivor
function for Z ∼ N (0, 1) does have an upper bound in the right tail.
For t > 0 and with u = z2/2,

Pr (Z ≥ t) =
1√
2π

∫ ∞
t

exp

{
−1

2
z2

}
dz

≤ 1√
2π

1

t

∫ ∞
t

z exp

{
−1

2
z2

}
dz (because

z

t
> 1)

=
1√
2π

1

t

∫ ∞
t2/2

exp {−u} du =
1√
2π

1

t
exp

{
−t2/2

}
.

The term exp
{
−t2/2

}
clearly goes to zero far faster than t−1, so

that Z has exponential tails.
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Normal–Based Distributions

The distributions χ2, t and F are of utmost importance for statistical
inference involving the wide class of normal linear models (which
includes the familiar two–sample t test, regression analysis, ANOVA,
random–effects models, as well as many econometrics models such
as for modeling panel and time–series data.

11 chi-square with ν degrees of freedom, χ2 (ν) or χ2
ν , ν ∈ R>0; the

density is given by

fχ2
ν

(x ; ν) =
1

2ν/2Γ (ν/2)
xν/2−1e−x/2I(0,∞) (x)

and is a special case of the gamma distribution with α = ν/2 and
β = 1/2. In most statistical applications, ν ∈ N and often the
notation χ2

n is used.
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Normal–Based Distributions: Student’s t

12 Student’s t with ν degrees of freedom, abbreviated t (ν) or tν ,
ν ∈ R>0;

ft (x ; ν) =
Γ
(
ν+1

2

)
ν
ν
2

√
π Γ
(
ν
2

) (ν + x2
)− ν+1

2 =
v−

1
2

B
(
ν
2 ,

1
2

) (1 + x2/ν
)− ν+1

2 .

If ν = 1, then the Student’s t distribution reduces to the Cauchy
distribution while, as ν →∞, it converges in distribution to the
normal. In most statistical applications ν ∈ N.

Let T ∼ tn. The mean of T is zero for n > 1, but does not otherwise
exist. For the variance,

V(T ) =
n

n − 2
, for n > 2.

It is easy to see from the p.d.f. that ft(x ; n) ∝ |x |−(n+1), which is similar
to the type I Pareto, showing that the maximally existing moment of the
Student’s t is bounded above by n.
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Normal–Based Distributions: Student’s t

Recall that the incomplete beta function is

Bx (p, q) = I[0,1] (x)

∫ x

0

tp−1 (1− t)q−1 dt

and the normalized function Bx (p, q) /B (p, q) is the incomplete beta
ratio, denoted by B̄x (p, q).

For t < 0, the c.d.f. of the Student’s t is given by

FT (t) =
1

2
B̄L

(
n

2
,

1

2

)
, L =

n

n + t2
, t < 0.

For t > 0, the symmetry of the t density about zero implies that
FT (t) = 1− FT (−t).
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Normal–Based Distributions: F

13 F (or variance ratio or Fisher’s F) with n1 numerator and n2

denominator degrees of freedom, F (n1, n2), n1, n2 ∈ R> 0;

fF (x ; n1, n2) =
n1/n2

B
(
n1

2 ,
n2

2

)
(

n1

n2
x
)

n1/2−1(
1 + n1

n2
x
)(n1+n2)/2

and

FF (x ; n1, n2) = B̄y

(n1

2
,

n2

2

)
, y = n1x / (n2 + n1x) .

In most statistical applications, n1, n2 ∈ N.
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Univariate Transformations

If X is a continuous r.v. with p.d.f. fX and g is a continuous
differentiable function with domain contained in the range of X and
dg/ dx 6= 0 ∀x ∈ SX , then fY , the p.d.f. of Y = g(X ), can be
calculated by

fY (y) = fX (x)

∣∣∣∣ dx

dy

∣∣∣∣ ,
where x = g−1 (y) is the inverse function of Y .

This can be intuitively understood by observing that

fX (x)Mx ≈ Pr (X ∈ (x , x+Mx)) ≈ Pr (Y ∈ (y , y+My)) ≈ fY (y)My

for small Mx and My , where My = g (x+Mx)− g (x) depends on
g , x and Mx .
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Examples of Univariate Transformations

The location-scale family discussed earlier is derived as follows. Let
Y = σX + µ and σ > 0. Then, with x = (y − µ) /σ,

fY (y) = fX (x)

∣∣∣∣ dx

dy

∣∣∣∣ = fX

(
y − µ
σ

)
σ−1.

Let U ∼ Unif (0, 1) and define Y = − ln U. Then, with
u = exp (−y),

fY (y) = fU (u)

∣∣∣∣ du

dy

∣∣∣∣ = I(0,1) (exp (−y))
(
e−y

)
= e−y I(0,∞) (y) ,

so that Y ∼ Exp (1).
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Example: The lognormal Distribution

This distribution has numerous applications in statistics, but is ubiquitous
in finance because a standard assumption is that the log of the (financial
asset) returns are normally distributed, so that the corresponding prices
are lognormal.

If Z is standard normal, then the density of X = exp (Zσ + ζ) + θ is

fZ (z)
dz

dx
=

1√
2π

1

(x − θ)σ
exp

(
− 1

2σ2
(ln (x − θ)− ζ)2

)
I(θ,∞) (x) .

The r th moment of X − θ is given by

E
[
(X − θ)r

]
= E

[
(exp (Zσ + ζ))r

]
= E [exp (rZσ + rζ)]

= exp (rζ)

∫ ∞
−∞

exp (rσZ ) fZ (z) dz

= exp (rζ) exp

(
1

2
r 2σ2

)
= exp

(
rζ +

1

2
r 2σ2

)
,

where E
[
etZ
]

is shown below.
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Example: The lognormal Distribution

Repeating from the previous slide, we have

E
[
(X − θ)r

]
= exp

(
rζ +

1

2
r 2σ2

)
.

The mean and variance can be more easily expressed in terms of
w = exp

(
σ2
)

as follows:

E [X ]− θ = E [X − θ] = exp

(
ζ +

1

2
σ2

)
= eζw 1/2

and
V (X ) = V (X − θ) = e2ζw 2 − e2ζw = e2ζw (w − 1) .
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The m.g.f. of the Normal

Let Z ∼ N (0, 1) and X ∼ N
(
µ, σ2

)
.

To compute E
[
etZ
]
, which is the so-called moment generating function

of Z at t, denoted MZ(t),

E
[
etZ
]

=
1√
2π

∫ ∞
−∞

exp

{
−1

2
z2 + tz

}
dz =

1√
2π

∫ ∞
−∞

exp

{
−1

2

(
z2 − 2tz

)}
dz

and, by completing the square as z2 − 2tz + t2 − t2 = (t − z)2 − t2,

E
[
etZ
]

=
1√
2π

∫ ∞
−∞

exp

{
−1

2

(
(t − z)2 − t2

)}
dz

= exp

{
t2

2

}∫ ∞
−∞

1√
2π

exp

{
−1

2
(z − t)2

}
dz = exp

{
t2

2

}
.

As X = µ+ σZ is a (location-scale) transformation of X ,

E
[
etX
]

= E
[
et(µ+σZ)

]
= exp {tµ}MZ(tσ) = exp

{
tµ+

t2σ2

2

}
.
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Partial Expectation of Log Normal
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Example: The χ2 Distribution

Let Y = X 2 and X ∼ N (0, 1).

With y = x2, split up the x region as x = ±√y so that

fY (y) = fX (x)

∣∣∣∣ dx

dy

∣∣∣∣
=

1√
2π

exp

{
−1

2
(
√

y)
2

}
y−1/2

2
I(0,∞) (

√
y)

+
1√
2π

exp

{
−1

2
(−√y)

2

}
y−1/2

2
I(−∞,0) (−√y)

=
1

2
√

2π
y−1/2e−y/2I(0,∞) (y) +

1

2
√

2π
y−1/2e−y/2I(0,∞) (y)

=
1√
2π

y−1/2e−y/2I(0,∞) (y) .

This shows that Y ∼ χ2
1.

Marc S. Paolella Fundamental Probability: A Computational Approach 235



Basic Probability
Discrete Random Variables

Continuous Random Variables

Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations

Exercise: Folded Cauchy

Let X ∼ Cau (0, 1). Recall that

fX (x) =
1

π

1

1 + x2
, FX (x) =

1

π

∫ x

−∞

1

1 + t2
dt =

1

2
+

1

π
arctan (x) .

From the symmetry of fX about 0, for x > 0, FX (x) = 1− FX (−x).

Let Z = |X | (a folded Cauchy).
From the symmetry, we would expect fZ (z) = 2fX (z) I(0,∞) (z).

For the c.d.f., for z > 0, FZ (z) is Pr (|X | ≤ z), which is
∫ z

−z fX (x)dx or

one minus twice the tail area
∫ −z
−∞ fX (x)dx or FZ (z) = 1− 2FX (−z).

Verify these formally, in two ways:
1. Express FZ directly in terms of FX and differentiate to get fZ .
2. Use the relation Z =

√
X 2; compute fY (y) where Y = X 2.
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Solution, FIRST

First way, for z ≥ 0,

FZ (z) = Pr (Z ≤ z) = Pr (|X | ≤ z) = Pr (−z ≤ X ≤ z)

= FX (z)− FX (−z) = [1− FX (−z)]− FX (−z)

= 1− 2FX (−z) = − 2

π
arctan (−z) =

2

π
arctan (z) .

We need to differentiate this to get fZ (z). Note that the derivation of
FZ (z) = 1− 2FX (−z) is valid for any r.v. with continuous p.d.f.
symmetric about zero, i.e., fX (−x) = fX (x), so that

fZ (z) =
dFZ (z)

dz
= −(−1)2fX (−z) = 2fX (z).

To confirm this in the Cauchy case, recalling that
d arctan (x) /dx = 1/

(
1 + x2

)
, which is obvious from differentiating the

top integral expression for FX (x) and using the FTC, we get

fZ (z) =
dFZ (z)

dz
=

2

π

d arctan (z)

dz
=

2

π

(
1

1 + z2

)
= 2fX (z) I(0,∞) (z) .
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Solution, SECOND

For the second way, as in Example 7.14, the c.d.f. of Y = X 2 can be
computed as

FY (y) = Pr (Y ≤ y) = Pr
(
X 2 ≤ y

)
= Pr (−√y ≤ X ≤ √y) = FX (

√
y)− FX (−√y)

while the density of Y is given by ∂FY (y) /∂y , or

fY (y) =
1

2
√

y
[fX (
√

y) + fX (−√y)] = π−1y−
1
2 (1 + y)−1 I(0,∞) (y) .
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Solution, SECOND, cont.

Now let Z =
√

Y so that y = z2, and

fZ (z) = fY (y)
dy

dz
= π−1

(
z2
)− 1

2
(
1 + z2

)−1
2zI(0,∞) (z) =

2

π

1

1 + z2
I(0,∞) (z) ,

which is of course the same as 2fX (z) I(0,∞) (z). Integrating (and using
the integral expression for FX (x)) immediately gives the c.d.f., or note
that, from the above expression for FY (y), for z ≥ 0,

FZ (z) = Pr
(√

Y ≤ z
)

= Pr
(
Y ≤ z2

)
= FY

(
z2
)

= FX

(√
z2
)
− FX

(
−
√

z2
)

=
1

2
+

1

π
arctan (z)−

(
1

2
+

1

π
arctan (−z)

)
=

2

π
arctan (z) .
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The Probability Integral Transform (PIT)

The probability integral transform of r.v. X is defined by
Y = FX (X ), where FX (t) = Pr (X ≤ t).

Here, FX (X ) is not to be interpreted as Pr (X ≤ X ) = 1, but rather
as a random variable Y defined as the transformation of X , the
transformation being the function FX .

Assume that FX is strictly increasing. Then FX (x) is a one to one
function for x ∈ (0, 1) so that

FY (y) = Pr (Y ≤ y) = Pr (FX (X ) ≤ y) = Pr
(
F−1
X (FX (X )) ≤ F−1

X (y)
)

= Pr
(
X ≤ F−1

X (y)
)

= FX

(
F−1
X (y)

)
= y ,

showing that Y ∼ Unif (0, 1).
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The PIT and Simulation

The probability integral transform is of particular value for
simulating random variables.

By applying F−1 to both sides of Y = FX (X ) ∼ Unif(0, 1), we see
that, if Y ∼ Unif (0, 1), then F−1(Y ) is a realization of a random
variable with c.d.f. F .

For example, from the exponential c.d.f.
y = F (x) = FExp (x ; 1) = 1− e−x , we have F−1 (x) = − ln (1− y).
Thus, taking Y ∼ Unif (0, 1), the PIT implies that
− ln (1− Y ) ∼ Exp (1).

As 1− Y is also uniformly distributed, we can use − ln (Y ) instead.
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Exercise: Problems 7.12 and 7.13(a)

Let X be a positive continuous r.v. with p.d.f. fX and c.d.f. FX .

1 Show that a necessary condition for E [X ] to exist is
limx→∞ x (1− FX (x)) = 0. Use this to show that the expected
value of a Cauchy random variable does not exist.

2 Prove via integration by parts that E [X ] =
∫∞

0
(1− FX (x)) dx if

E [X ] <∞.

3 Prove that

E [X ] =

∫ ∞
0

(1− FX (x)) dx (8)

by expressing 1− FX as an integral, and reversing the integrals.
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Solution to 1, first part

Necessity means that, if E [X ] exists, then

lim
x→∞

x (1− FX (x)) = 0.

If E [X ] =
∫∞

0
t fX (t) dt exists, then

lim
x→∞

∫ ∞
x

t fX (t) dt = 0.

So, as limx→∞ x (1− FX (x)) ≥ 0 and

lim
x→∞

x (1− FX (x)) = lim
x→∞

x

∫ ∞
x

fX (t) dt ≤ lim
x→∞

∫ ∞
x

t fX (t) dt = 0,

it follows that limx→∞ x (1− FX (x)) = 0.
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Solution to 1, for the Cauchy

The theorem is valid for nonnegative r.v.s, so: can we apply it to E
[
|X |
]
?

Observe that, if X is a random variable with density fX symmetric about zero,
then fX (−x) = fX (x) and, substituting u = −x ,

E [X ] =

∫ 0

−∞
xfX (x) dx +

∫ ∞
0

xfX (x) dx = −
∫ ∞

0

ufX (u) du +

∫ ∞
0

xfX (x) dx = 0,

if
∫∞

0
xfX (x)dx exists. If it does, then, as E [g (X )] =

∫
g(x) f (x)dx ,

E [|X |] =

∫ 0

−∞
|x | fX (x) dx +

∫ ∞
0

|x | fX (x) dx

=

∫ 0

−∞
(−x) fX (x) dx +

∫ ∞
0

xfX (x) dx

= −
∫ 0

−∞
xfX (x) dx +

∫ ∞
0

xfX (x) dx = 2

∫ ∞
0

xfX (x) dx ,

where
∫ 0

−∞ xfX (x)dx = −
∫∞

0
ufX (u)du from above.
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Solution to 1, for the Cauchy

That E [|X |] = 2
∫∞

0
xfX (x) dx also follows because, as we saw above in

the context of the Cauchy, for Z = |X | and fX symmetric about zero,
fZ (z) = 2fX (z) for z ≥ 0.

Thus, if fX (−x) = fX (x) and E [X ] exists, then E [|X |] exists.

The contrapositive then implies that, if E [|X |] does not exist, then E [X ]
does not exist.
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Solution to 1, for the Cauchy

Above we saw that the p.d.f. and c.d.f. of a folded standard Cauchy
random variable, call it X , are

fX (x) =
2

π

1

1 + x2
and FX (x) =

2

π
arctan (x) .

As limx→∞ (1− FX (x)) = 0, l’Hôpital’s rule gives

lim
x→∞

x (1− FX (x)) = lim
x→∞

(
1− 2

π arctan (x)
)

1/x
= lim

x→∞

− 2
π

1
1+x2

−x−2
=

2

π
,

which is nonzero.
The necessity of the condition implies that E[|X |] and, hence, E[X ] does
not exist.
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Solution to 2 (first way)

Let u = 1− FX (x) and dv = dx , so that

I =

∫ ∞
0

(1− FX (x)) · 1 dx

= uv |∞0 −
∫ ∞

0

v du = x (1− FX (x))|∞0 −
∫ ∞

0

(−1) xF ′X (x) dx

= lim
x→∞

x (1− FX (x)) +

∫ ∞
0

xfX (x) dx

= E [X ] ,

provided limx→∞ x (1− FX (x)) = 0, which is a necessary condition for
the existence of the first moment, as shown in the previous question.
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Solution to 2 (second way)

What if we started with the definition of E [X ] and didn’t know the other
expression?

From

E [X ] =

∫ ∞
0

xfX (x) dx ,

let u = x and dv = fX (x)dx , so that du = dx and v = FX (x), and

E [X ] =

∫ ∞
0

xfX (x) dx = xFX (x)|∞0 −
∫ ∞

0

FX (x) dx .

Now observe that

xFX (x)|∞0 = lim
x→∞

xFX (x)− lim
x→0

xFX (x) = lim
x→∞

x lim
x→∞

FX (x) = lim
x→∞

x .
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Solution to 2 (second way)

Finally, assuming E [X ] <∞,

E [X ] = lim
x→∞

x +

[
−
∫ ∞

0

FX (x) dx + lim
x→∞

x − lim
x→∞

x

]
= lim

x→∞
x +

[
−
∫ ∞

0

FX (x) dx +

∫ ∞
0

dx − lim
x→∞

x

]
=

∫ ∞
0

dx −
∫ ∞

0

FX (x) dx =

∫ ∞
0

[1− FX (x)] dx ,

which is the result.

This is the “informal way” of writing things, which makes them clear.
Somewhat more correctly...
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Solution to 2 (second way)

...assuming E [X ] <∞,

E [X ] = lim
x→∞

x +

[
−
∫ ∞

0

FX (x) dx + lim
x→∞

x − lim
x→∞

x

]
= lim

x→∞
x +

[
− lim

b→∞

∫ b

0

FX (x) dx + lim
b→∞

∫ b

0

dx − lim
x→∞

x

]

= lim
b→∞

∫ b

0

dx − lim
b→∞

∫ b

0

FX (x) dx

= lim
b→∞

(∫ b

0

dx −
∫ b

0

FX (x) dx

)
= lim

b→∞

(∫ b

0

(1− FX (x)) dx

)

=

∫ ∞
0

[1− FX (x)] dx .

Marc S. Paolella Fundamental Probability: A Computational Approach 250



Basic Probability
Discrete Random Variables

Continuous Random Variables

Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations

Solution to 3

Assuming the order of integration can be interchanged, a graph of the
range of integration shows that∫ ∞

0

(1− FX (x)) dx =

∫ ∞
0

∫ ∞
x

fX (t) dt dx

=

∫ ∞
0

(∫ t

0

dx

)
fX (t) dt =

∫ ∞
0

tfX (t) dt,

and the last expression is just E [X ].
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Stochastically More Variable

Recall that function h is convex if, for all 0 < λ < 1 and all x1, x2,

h(λx1 + (1− λ)x2) ≤ λh(x1) + (1− λ)h(x2).

For example, functions h(x) = x2 and h(x) = ex are convex for all x ,
and h(x) = 1/x is convex for x > 0. Function g is concave if −g is
convex; g(x) = ln(x) and g(x) =

√
x are concave.

Random variable X is said to be more variable than Y , denoted
X ≥v Y , (or also FX ≥v FY , where FX is the c.d.f. of X ), if
E [h (X )] ≥ E [h (Y )] for all increasing and convex functions h.

Let F̄X (x) = Pr (X > x). We wish to prove: If X and Y are
nonnegative r.v.s, then X ≥v Y iff, for all a ≥ 0,∫ ∞

a

F̄X (x) dx ≥
∫ ∞
a

F̄Y (x) dx , (9)
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Stochastically More Variable

To prove “only if”, as in Ross, Stochastic Processes (1996, Section 9.5),
assume X and Y are nonnegative r.v.s and X ≥v Y . Define the
increasing, convex function

ha (x) = (x − a)+ = (x − a) I(a,∞) (x) = max (0, x − a)

so that E [ha (X )] ≥ E [ha (Y )]. Define events

E +
x =

{
(X − a)+

> x
}

and Ex = {X − a > x} .

As long as x > 0, observe that E +
x = Ex for both cases X ≤ a and X > a.
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Stochastically More Variable

Thus, recalling (8), i.e., that E [X ] =
∫∞

0
(1− FX (x)) dx ,

E [ha (X )] =

∫ ∞
0

Pr (ha (X ) > x) dx

=

∫ ∞
0

Pr
(
E +
x

)
dx =

∫ ∞
0

Pr (Ex) dx =

∫ ∞
0

Pr (X > a + x) dx

and substituting z = a + x in the last integral gives

E [ha (X )] =

∫ ∞
a

Pr (X > z) dz =

∫ ∞
a

F̄X (z) dz .

Similarly, E [ha (Y )] =
∫∞
a

F̄Y (z)dz , and this shows (9).
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Stochastically More Variable: Continuation and Exercise

To prove “if”, assume (9) for all a ≥ 0 and let h be an increasing, convex
function.

Assume further that h is twice differentiable, in which case, convexity of
h implies that h′′ (x) ≥ 0, so that, from (9),∫ ∞

0

h′′ (a)

∫ ∞
a

F̄X (x) dx da ≥
∫ ∞

0

h′′ (a)

∫ ∞
a

F̄Y (x) dx da.

Exercise: Show that the left hand side (lhs) is∫ ∞
0

h′′ (a)

∫ ∞
a

F̄X (x) dx da = E [h (X )]− h (0)− h′ (0)E [X ] .

(Solution after the next slide...)
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Stochastically More Variable

Similarly, the rhs is E [h (Y )]− h (0)− h′ (0)E [Y ], so that

E [h (X )]− h′ (0)E [X ] ≥ E [h (Y )]− h′ (0)E [Y ]

or
E [h (X )]− E [h (Y )] ≥ h′ (0) (E [X ]− E [Y ]) .

But, as h is increasing, h′ (0) ≥ 0, and setting a = 0 in (9) shows that
E [X ] ≥ E [Y ], so that E [h (X )]−E [h (Y )] ≥ 0, or E [h (X )] ≥ E [h (Y )],
which is the same as saying that X ≥v Y , as was to be shown.
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Solution to the Exercise

We change the order of integration in the same manner as was done to
show that, for nonnegative X , E [X ] =

∫∞
0

(1− FX (x))dx . That is,

A =

∫ ∞
0

h′′ (a)

∫ ∞
a

F̄X (x) dx da =

∫ ∞
0

∫ x

0

h′′ (a) da F̄X (x) dx

=

∫ ∞
0

[h′ (x)− h′ (0)] F̄X (x) dx

=

∫ ∞
0

h′ (x) F̄X (x) dx −
∫ ∞

0

h′ (0) F̄X (x) dx

=

∫ ∞
0

h′ (x) F̄X (x) dx − h′ (0)E [X ] .
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Solution, cont.

Similarly, the latter integral is

B =

∫ ∞
0

h′ (x) F̄X (x) dx =

∫ ∞
0

h′ (x)

∫ ∞
x

fX (y) dy dx

=

∫ ∞
0

∫ y

0

h′ (x) dx fX (y) dy

=

∫ ∞
0

[h (y)− h (0)] fX (y) dy

=

∫ ∞
0

h (y) fX (y) dy −
∫ ∞

0

h (0) fX (y) dy

= E [h (X )]− h (0) .

Thus, A = E [h (X )]− h (0)− h′ (0)E [X ], as was to be shown.
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Stochastically More Variable: Application and Homework

The result (or, it’s “dual”) is useful in the study of stochastic
dominance in financial economics.

In particular, Second-Order Stochastic Dominance, SSD, is defined
as follows. For r.v.s X and Y with with support on a closed interval
[0, 1], X second-order stochastically dominates Y , written FX SSD
FY , if, for all a ∈ [0, 1],∫ a

0

[FY (x)− FX (x)] dx ≥ 0. (10)

See, e.g., Danthine and Donaldson, Intermediate Financial Theory
(2005, Section 4.6) and Laffont, The Economics of Uncertainty and
Information, (1989, Section 2.5).

Let u be an increasing, concave, twice-differentiable (utility)
function, so that u′ (x) ≥ 0 and u′′ (x) ≤ 0. Prove that

E [u (Y )] ≤ E [u (X )] .
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Stochastically More Variable: Solution to Homework

From (10),∫ 1

0

u′′ (a)

∫ a

0

FY (x) dx da ≤
∫ 1

0

u′′ (a)

∫ a

0

FX (x) dx da (11)

and the lhs is

A =

∫ 1

0

u′′ (a)

∫ a

0

FY (x) dx da =

∫ 1

0

[∫ 1

x

u′′ (a) da

]
FY (x) dx

=

∫ 1

0

u′ (1)FY (x) dx −
∫ 1

0

u′ (x)FY (x) dx

and the latter integral is

B =

∫ 1

0

u′ (x)FY (x) dx =

∫ 1

0

u′ (x)

∫ x

0

fY (t) dt dx

=

∫ 1

0

fY (t)

∫ 1

t

u′ (x) dx dt

=

∫ 1

0

fY (t) [u (1)− u (t)] dt = u (1)− E [u (Y )] .
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Stochastically More Variable: Solution to Homework

The rhs is obviously similar, so that (11) implies∫ 1

0

u′ (1) FY (x) dx + E [u (Y )] ≤
∫ 1

0

u′ (1) FX (x) dx + E [u (X )]

or

E [u (Y )]− E [u (X )] ≤ u′ (1)

∫ 1

0

[FX (x)− FY (x)] dx .

The rhs is negative, because u′ (1) is positive and the integral is just the
reverse of (10) for a = 1, and thus negative.
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Exercise: Problem 7.20

The F density is given by:

fF (x ; n1, n2) =
n

B
(
n1

2 ,
n2

2

) (nx) n1/2−1

(1 + nx)(n1+n2)/2
, n =

n1

n2
,

and the beta is given by

fBeta (x ; p, q) =
1

B (p, q)
xp−1 (1− x)q−1 I[0,1] (x) .

Let X ∼ F(n1, n2) and define

B =
n1

n2
X

1 + n1

n2
X
.

Show that B ∼ Beta (n1/2, n2/2) and (1− B) ∼ Beta (n2/2, n1/2).
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Solution

The density of X is given by

fX (x ; n1, n2) =
1

B
(
n1

2 ,
n2

2

) (n1

n2

)n1/2
x (n1−2)/2(

1 + n1

n2
x
)(n1+n2)/2

I(0,∞) (x) .

Defining a = n1/n2, Pr (B ≤ b) is given by

Pr

(
aX

1 + aX
≤ b

)
= Pr

(
X ≤ b

a (1− b)

)
=

1

B (n1/2, n2/2)
an1/2

∫ b
a(1−b)

0

x (n1−2)/2

(1 + ax)(n1+n2)/2
dx .
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Solution

Using the change of variable y = y (x) = ax (1 + ax)−1,

x = ya−1 (1− y)−1 and dx/ dy = a−1 (1 + y)−2 with the limits of

integration y (0) = 0 and y
(

b
a(1−b)

)
= b to get, noting that

1 + y (1− y)−1 = (1− y)−1,

Pr (B ≤ b) =
1

B (n1/2, n2/2)
an1/2

∫ b

0

(
y

a(1−y)

)(n1−2)/2

(
1 + ay

a(1−y)

)(n1+n2)/2

1

a (1− y)2 dy

=
1

B (n1/2, n2/2)
a( n1

2 −
n1−2

2 −1)
∫ b

0

y
n1
2 −1 (1− y)−

n1−2
2 +

n1+n2
2 −2 dy

=
1

B (n1/2, n2/2)

∫ b

0

y
n1
2 −1 (1− y)

n2
2 −1 dy = B̄b (n1/2, n2/2) ,

so that B ∼ Beta (n1/2, n2/2).
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Solution

In general, if X ∼ Beta (a, b), then

fX (x ; a, b) =
Γ (a + b)

Γ (a) Γ (b)
xa−1 (1− x)b−1 I(0,1) (x)

and, with Y = 1− X ,

fY (x ; a, b) = fX (1− y ; a, b) |−1| =
Γ (a + b)

Γ (a) Γ (b)
(1− y)a−1 yb−1I(0,1) (1− y)

so that Y ∼ Beta (b, a).
Thus,

1− B = 1− (n1/n2) X

1 + (n1/n2) X
=

1

1 + (n1/n2) X
∼ Beta (n2, n1) .
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Course Outline
1 Basic Probability

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

2 Discrete Random Variables
Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

3 Continuous Random Variables
Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations
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Conditional Distributions

Let FX ,Y denote a bivariate c.d.f. with corresponding p.m.f. or p.d.f.
fX ,Y and define A and B to be the events {(x , y) : x ∈ A0} and
{(x , y) : y ∈ B0}, respectively.
The conditional probability Pr (x ∈ A0 | y ∈ B0) is given by

Pr (x ∈ A0, y ∈ B0)

Pr (y ∈ B0)
=

Pr (A ∩ B)

Pr (B)
,

assuming Pr (B) > 0, where

Pr (B) = Pr (x ∈ R, y ∈ B0) =

∫
y∈B0

dF (y)

is evaluated from the marginal p.m.f. or p.d.f. of Y .
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Conditional Distributions (2)

Discrete case: Pr (x ∈ A0 | y ∈ B0) is given by∑
x∈A0

∑
y∈B0

fX ,Y (x , y)∑
x∈R

∑
y∈B0

fX ,Y (x , y)
=
∑
x∈A0

∑
y∈B0

fX ,Y (x , y)∑
y∈B0

fY (y)
=:
∑
x∈A0

fX |Y∈B0
(x | B0) ,

where fX |Y∈B0
is defined to be the conditional p.m.f. given y ∈ B0.

Now let event B = {(x , y) : y = y0}. If event A = {(x , y) : x ≤ x0},
then the conditional c.d.f. of X given Y = y0 is

Pr (A | B) =
Pr (X ≤ x ,Y = y0)

Pr (Y = y0)
=

x∑
i=−∞

fX ,Y (i , y0)

fY (y0)
=: FX |Y=y0

(x | y0) .

Likewise, if A is the event {(x , y) : x = x0}, then the conditional
p.m.f. of X given Y = y0 is

Pr (A | B) =
Pr (X = x ,Y = y0)

Pr (Y = y0)
=

fX ,Y (x , y0)

fY (y0)
=: fX |Y (x | y0) .
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Conditioning on the Sum

Let X1 and X2 be independent r.v.s. We want the conditional
distribution of X1 given that their sum is some particular value,
say s.
From the previous conditional p.m.f. formula and the independence
of X1 and X2,

Pr (X1 = x | X1 + X2 = s) =
Pr (X1 = x , X2 = s − x)

Pr (X1 + X2 = s)

=
Pr (X1 = x) Pr (X2 = s − x)

Pr (X1 + X2 = s)
.

Important special cases:

1 If Xi
iid∼ Bin (n, p), then X1 + X2 ∼ Bin (2n, p) and X1 | X1 + X2 is

hypergeometric.

2 If Xi
iid∼ Geo (p), then X1 + X2 ∼ NBin (r = 2, p) and X1 | X1 + X2 is

discrete uniform.
3 If Xi

ind∼ Poi (λi ), then X1 + X2 ∼ Poi (λ1 + λ2) and X1 | X1 + X2 is
binomial with p = λ1/ (λ1 + λ2) and x = 0, 1, . . . , s.
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Continuous Conditional Distributions

In the continuous case, Pr (x ∈ A0 | y ∈ B0) is given by∫
x∈A0

∫
y∈B0

fX ,Y (x , y) dy dx∫
x∈R

∫
y∈B0

fX ,Y (x , y) dy dx
=

∫
x∈A0

∫
y∈B0

fX ,Y (x , y) dy∫
y∈B0

fY (y) dy
dx

=:

∫
x∈A0

fX |Y∈B0
(x | B0) dx

and fX |Y∈B0
is referred to as the conditional p.d.f. given y ∈ B0.

If B0 is a point in SY , this is problematic:

Pr (X ≤ x | Y = y0) =
Pr (X ≤ x ,Y = y0)

Pr (Y = y0)
=

0

0
,

so that alternative definitions are needed.
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Continuous Conditional Distributions (2)

These are

FX |Y=y0
(x | y0) :=

∫ x

−∞

f (t, y0)

f (y0)
dt

and fX |Y=y0
(x | y0) :=

∂

∂x
FX |Y (x | y0) =

f (x , y0)

f (y0)
,

which should appear quite natural in light of the results for the
discrete case.

The equation for FX |Y=y0
can be justified by expressing

Pr (x ∈ A0 | Y = y0) = lim
h→0+

∫
x∈A0

∫ y0+h

y0
fX ,Y (t, y) dy∫ y0+h

y0
fY (y) dy

dt

=

∫
x∈A0

hfX ,Y (x , y0)

hfY (y0)
dx =

∫
x∈A0

fX ,Y (x , y0)

fY (y0)
dx ,

using the mean value theorem for integrals.
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General Definition

Usually FX |Y=y0
and fX |Y=y0

are not given for a specific value y0 but
rather as a general function of y , denoted respectively as

FX |Y (x | y) :=

∫ x

−∞ fX ,Y (t, y) dt

fY (y)
, fX |Y (x | y) :=

fX ,Y (x , y)

fY (y)
,

which can then be evaluated for any particular y = y0.

In this case, we speak simply of the conditional c.d.f. and
conditional p.d.f., given as a function of y .

By multiplying both sides of fX |Y (x | y) = fX ,Y (x , y) /fY (y) with
fY (y) and integrating with respect to y , we obtain an expression for
the marginal of X as

fX (x) =

∫ ∞
−∞

fX |Y (x | y) dFY (y) .
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General Definition (2)

fX is weighted average of the conditional density of X given Y,
weighted by density Y.

The analogy to the law of total probability is particularly clear in the
discrete case, i.e., Pr (X = x) =

∑
Pr (X = x | Y = y) Pr (Y = y)

for all x ∈ SX .

Furthermore, Bayes’ rule can be generalized as

fX |Y=y (x | y) =
fX (x) fY |X (y | x)∫∞

−∞ fY |X (y | x) dFX (x)
,

which provides an expression for conditional X | Y in terms of that
for Y | X and the marginal of X .
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Exchange Paradox (Wallet Game)

The so–called Exchange Paradox, or Wallet Game provides a nice
example of the value and “naturalness” of Bayesian arguments, and goes
as follows.
There are two sealed envelopes, the first with m dollars inside, and the
second with 2m dollars inside, and they are otherwise identical
(appearance, thickness, weight, etc.).
You and your opponent are told this, but the envelopes are mixed up so
neither of you know which contains more money. You randomly choose
an envelope, and your opponent receives the other.
You open yours, and find x dollars inside. Your opponent opens hers, and
finds out the contents; call it Y dollars.
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Exchange Paradox (Wallet Game)

The two players are then given the opportunity to trade envelopes.
You quickly reason as follows: With equal probability, her envelope
contains either Y = x/2 or 2x dollars. If you trade, you thus expect to
get

1

2

(x

2
+ 2x

)
=

5x

4
, (12)

which is greater than x , so you express your interest in trading.

Your opponent, of course, made the same calculation, and is just as
eager to trade!
The paradox is that, while the rule which led to the decision to trade
seems simple and correct, the result that one should always trade seems
intuitively unreasonable.
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Exchange Paradox (Wallet Game)

The Bayesian resolution of the problem involves treating the amount of
money in the first envelope, m, as a random variable, M, and with a prior
probability distribution.
To believe that no prior information exists on M violates all common
sense. For example, if the game is being played at a party, the 3m dollars
probably derived from contributions from a few people, and you have an
idea of their disposable income and their willingness to part with their
money for such a game.
Let gM be the p.d.f. of M, and let X be the amount of money in the
envelope you chose. Then

Pr (X = m | M = m) = Pr (X = 2m | M = m) =
1

2
.
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Exchange Paradox (Wallet Game)

As X is either M or 2M, it follows that, on observing X = x , M is either
x or x/2.
From Bayes’ rule, Pr (M = x | X = x) is

Pr (X = x | M = x) gM (x)

Pr (X = x | M = x) gM (x) + Pr (X = x | M = x/2) gM (x/2)

=
1
2 gM (x)

1
2 gM (x) + 1

2 gM (x/2)
=

gM (x)

gM (x) + gM (x/2)
,

and likewise,

Pr (M = x/2 | X = x) =
gM (x/2)

gM (x) + gM (x/2)
.
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Exchange Paradox (Wallet Game)

Thus, the expected amount after trading is

E [Y | X = x ] =
gM (x/2)

gM (x) + gM (x/2)
· x

2
+

gM (x)

gM (x) + gM (x/2)
· 2x , (13)

and when g (x/2) = 2g (x), E [Y | X = x ] = x .
Thus, the decision rule is:

trade if g (x/2) < 2g (x) ,

and keep it otherwise.
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Exchange Paradox (Wallet Game)

For example, if gM ∼ Exp (λ), i.e., gM (m;λ) = λe−λmI(0,∞) (m), then

g (x/2) < 2g (x)⇒ λe−λx/2 < 2λe−λx ⇒ x <
2 ln 2

λ
,

i.e., you should trade if x < (2 ln 2) /λ.
Note that (12) and (13) coincide when gM (x/2) = gM (x) for all x , i.e.,
gM (x) is a constant, which implies that the prior distribution on M is a
“noninformative”, improper uniform density on (0,∞).
As mentioned above, it would defy logic to believe that, in a realistic
situation which gives cues about the amount of money involved, someone
would place equal probability on M being 10 dollars and M being 1000
dollars.
Thus, the paradox is resolved by realizing that prior information cannot
be ignored if one wishes to make a rational decision.
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Memoryless

Let X ∼ Exp (λ). Then, for x ,s ∈ R>0,

Pr (X > s + x | X > s) =
Pr (X > s + x)

Pr (X > s)

=
exp {−λ (s + x)}

exp {−λs}
= e−λx = Pr(X > x).

The fact that this conditional probability is not a function of s is
referred to as the memoryless property.
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Memoryless (2)

It is worth emphasizing with some concrete numbers what the
memoryless property means, and what it does not. If, say, the
lifetime of an electrical device, measured in days, follows an
exponential distribution, and we have observed that it is still
functioning at time t = 100 (the event X > 100), then the
probability that it will last at least an additional 10 days (i.e.,
conditional on our observation) is the same as the unconditional
probability that the device will last at least 10 days.

What is not true is that the probability that the device, conditional
on our observation, will last an additional 10 days, is the same as
the unconditional probability of the device lasting at least 110 days.
That is, it is not true that Pr (X > s + x | X > s) = Pr (X > s + x).
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Conditional Moments

Moments (and expectations of other functions) of a conditional
distribution are defined in a natural way:

Let Y = (Xm+1, . . . ,Xn) so that X = (Xm,Y), the expected value of
function g (Xm) conditional on Y is given by

E [g (Xm) | Y] =

∫
x∈Rm

g (Xm) dFXm|Y (x | y) .

Note that E [g (Xm) | Y] is a function of y.

As such, it also makes sense to consider the expectation of
E [g (Xm) | Y] with respect to Y.
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Conditional Moments (2)

In the continuous univariate setting,

EYEX |Y [g (X ) | Y ] =

∫ ∞
−∞

fY (y)

∫ ∞
−∞

g (x)
fX ,Y (x , y)

fY (y)
dx dy

=

∫ ∞
−∞

∫ ∞
−∞

g (x) fX ,Y (x , y) dx dy

=

∫ ∞
−∞

g (x)

∫ ∞
−∞

fX ,Y (x , y) dy dx

=

∫ ∞
−∞

g (x) fX (x) dx = EX [g (X )] .

i.e.,
EE [g (X ) | Y ] = E [g (X )] ,

which is referred to as the Law of the iterated expectation.
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Example

Consider the bivariate density

fX ,Y (x , y) = e−y I(0,∞) (x) I(x,∞) (y) .

The marginal distribution of X is

fX (x) = I(0,∞) (x)

∫ ∞
x

e−y dy = e−xI(0,∞) (x) ,

so that X ∼ Exp (1) and E [X ] = 1.

For Y, note that the range of x is 0 to y so that

fY (y) =

∫ y

0

e−y dx = ye−y

so that Y ∼ Gam (2, 1) and E [Y ] = 2.

Marc S. Paolella Fundamental Probability: A Computational Approach 284



Basic Probability
Discrete Random Variables

Continuous Random Variables

Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations

Example (2)

The conditional density of Y | X is

fY |X (y | X = x) =
fX ,Y (x , y)

fX (x)
= ex−y I(0,∞) (x) I(x,∞) (y) ,

i.e., such that 0 < x < y , with expected value

E [Y | X ] =

∫ ∞
x

yfY |X (y | x) dy = ex

∫ ∞
x

ye−y dy = x + 1,

using the substitution u = y and dv = e−y dy .

From the law of the iterated expectation,

E [Y ] = E [E [Y | X ]] = E [X + 1] = 2

as above.
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Exercise

(From Ross, 1988, p. 286, based on an example in Emanuel Parzen,
Stochastic Processes, 1962, page 50.)

A miner is lost in a tunnel with 3 doors. Behind the first door is a
tunnel which, after 3 hours, leads out of the mine.

Behind the 2nd and 3rd doors are tunnels which, after 5 and 7
hours, respectively, lead back to the same position.

Assume the doors all look the same and cannot be marked, and that
the miner chooses randomly among them.

How many hours do we expect the miner to require to get out of the
mine?
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Expected Shortfall

An important measure in financial risk management is the expected
shortfall. Before defining it, we state a general result:

Let the p.d.f. and c.d.f. of r.v. R be fR and FR . Then the expected
value of measurable function g (R), given that R ≤ c , is

E [g (R) | R ≤ c] =

∫ c

−∞ g (r) fR (r) dr

FR (c)
.

Exercise I Show that, for R ∼ N (0, 1) with p.d.f. φ and c.d.f. Φ,
and a fixed c < 0, E [R | R ≤ c] = −φ (c) /Φ (c).
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Solution

Solution to Exercise I
Let u = −r 2/2. Then

E [R | R ≤ c] =
1

Φ (c)

∫ c

−∞
rφ (r) dr

=
1

Φ (c)

1√
2π

∫ c

−∞
r exp

{
−1

2
r 2

}
dr

=
1

Φ (c)

1√
2π

(
− exp

{
−1

2
c2

})
= − φ (c)

Φ (c)
.
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Expected Shortfall

The expected shortfall is defined as

ESθ (R) = E [R | R ≤ qR,θ] =
1

θ

∫ qR,θ

−∞
rfR (r) dr ,

where R is a future period financial return and qR,θ is the θ-quantile
such that Pr (R ≤ qR,θ) = θ and θ is small, typically 1%.

Exercise II Let Z be a location zero, scale one r.v., and let
Y = σZ + µ for σ > 0. Show that

ESθ (Y ) = µ+ σESθ (Z ) ,

i.e., that ES preserves location-scale transformations.
Hint: First show that qY ,θ = σqZ ,θ + µ.
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Expected Shortfall: Solution to Exercise II

First, we have

Pr (Z ≤ qZ ,θ) = θ ⇔ Pr (σZ + µ ≤ σqZ ,θ + µ) = θ

⇔ qY ,θ = σqZ ,θ + µ.

Then,

ESθ (Y ) = E [Y | Y ≤ qY ,θ]

= E [σZ + µ | σZ + µ ≤ σqZ ,θ + µ]

= σE [Z | Z ≤ qZ ,θ] + µ = σESθ (Z ) + µ.
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Expected Shortfall: Solution to Exercise II: Alternate Proof

Recalling the location-scale density transformation
fY (y) = σ−1fZ ((y − µ)/σ), we get

ESθ (Y ) =
1

θ

∫ qY ,θ

−∞
yfY (y) dy =

1

θ

∫ qY ,θ

−∞
y

1

σ
fZ

(
y − µ
σ

)
dy .

Substituting z = (y − µ) /σ, y = µ+ σz , dy = σdz ,

ESθ (Y ) =
1

θ

∫ qY ,θ − µ
σ

−∞
(µ+ σz) fZ (z) dz

=
1

θ
µ

∫ qZ,θ

−∞
fZ (z) dz +

1

θ
σ

∫ qZ,θ

−∞
zfZ (z) dz

= µ+ σESθ (Z ) .
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Expected Shortfall: Exercise III

Let QX be the quantile function of continuous r.v. X , i.e.,
QX : (0, 1)→ R with p 7→ F−1

X (p). Show that ESθ (X ) can be
expressed as

ESθ (X ) =
1

θ

∫ θ

0

QX (p) dp.

This is a common form of expressing ES because a weighting
function (called the risk spectrum or risk-aversion function) can be
incorporated into the integral to form the so-called spectral risk
measure.

Use this result to construct another proof of Exercise II.
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Expected Shortfall: Solution to Exercise III

Let u = QX (p), so that p = FX (u) and dp = fX (u)du. Then, with
qθ = QX (θ), ∫ θ

0

QX (p) dp =

∫ qθ

−∞
ufX (u) du.

To verify this in Matlab, we use the N(0, 1) case and run:

alpha=0.01; c=norminv(alpha);

ES1 = -normpdf(c)/normcdf(c)

ES2 = quadl(@norminv, 1e-7, alpha, 1e-7, 0) / alpha
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Expected Shortfall: Solution to Exercise III

Solution: Using III to Show II
For Y = σZ + µ, we showed first in Exercise II that qY ,θ = σqZ ,θ + µ.
Thus,

ESθ (Y ) =
1

θ

∫ θ

0

QY (p) dp =
1

θ

∫ θ

0

[σQZ (p) + µ] dp

= σ
1

θ

∫ θ

0

QZ (p) dp + µ = µ+ σESθ (Z ) .
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Lower Partial Moments

If it exists, the nth order lower partial moment with respect to reference
point c is, for n ∈ N,

LPMn,c (X ) =

∫ c

−∞
(c − x)n fX (x) dx .

This is an important measure for financial portfolio risk with many
advantages over the traditional measure (variance). It is related to the
Expected Shortfall.

The LPM can be computed with numeric integration, though for both
the normal and for fat-tailed distributions, choosing the lower bound on
the integral can be problematic.
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Lower Partial Moments

Applying the binomial theorem to (c − x)n, we can write

LPMn,c (X ) =
n∑

h=0

Kh,cTh,c (X ) , (14)

where we define

Kh,c = Kh,c (n) =

(
n

h

)
cn−h (−1)h

and

Th,c (X ) =

∫ c

−∞
xhfX (x) dx .

Now we just need “closed form” expressions for Th,c (X ). With them,
(14) can be quickly and accurately evaluated without the aforementioned
numeric integration problem.
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Exercise: Lower Partial Moments for Normal

For Z ∼ N (0, 1) and c < 0, calculation shows (let u = z2/2 for z < 0)
that, for h ∈ N,

Th,c (Z ) =
(−1)h 2h/2−1

√
π

[
Γ

(
h + 1

2

)
− Γc2/2

(
h + 1

2

)]
,

where Γx (a) is the incomplete gamma function.

In particular,

T0,c (Z ) = Φ (c) and T1,c (Z ) = −φ (c).

First show T0,c (Z ), then T1,c (Z ), and finally the general expression for
Th,c (Z ) above.
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Exercise: Lower Partial Moments for Student’s t

For X ∼ T (v), with density

fT (x ; v) = Kv

(
1 + x2/v

)− v+1
2 , Kv =

v−
1
2

B
(
v
2 ,

1
2

) ,
we have (substitute u = 1 + x2/v for x < 0 and then x = (u − 1) /u), for
h < v ,

Th,c (X ; v) =
(−1)h vh/2

2B
(
v
2 ,

1
2

) [B

(
h + 1

2
,

v − h

2

)
− Bw

(
h + 1

2
,

v − h

2

)]
,

where w = c2/v
1+c2/v and Bw is the incomplete beta function. Show this.

In particular,

T0,c (X ; v) = FX (c ; v) = Φv (c) and T1,c (X ; v) = φv (c)
(
v + c2

)
/ (1− v).
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Independence

Our first formal encounter with independence stated that r.v.s
X1, . . . ,Xn are independent iff their joint density can be factored
into the marginals as fX (x) =

∏n
i=1 fXi (xi ).

An equivalent statement in the bivariate case can be given in terms
of conditional r.v.s: X and Y are independent when
fX |Y (x | y) = fX (x) or

fX ,Y (x , y) = fX |Y (x | y) fY (y) = fX (x) fY (y) .

This can be generalized to n r.v.s by requiring that fZ|(X\Z) = fZ for
all subsets Z = (Xj1 , . . .Xjk ) of X.

Thus, a set of r.v.s are mutually independent if their marginal and
conditional distributions coincide.
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Example

If X1, . . . ,Xn
ind∼ N

(
µi , σ

2
i

)
, then their joint density is just the

product of n normals, or

fX (x) =
n∏

i=1

fN

(
xi ;µi , σ

2
i

)
=

n∏
i=1

1

σi
√

2π
exp

{
−1

2

(
xi − µi

σi

)2
}

=
1√

(2π)n
∏n

i=1 σ
2
i

exp

{
−1

2

n∑
i=1

(
xi − µi

σi

)2
}
.

As an important special case, if X1, . . . ,Xn
iid∼ N (0, 1), then

fX (x) =
1

(2π)n/2
exp

{
−1

2

n∑
i=1

x2
i

}
.

Marc S. Paolella Fundamental Probability: A Computational Approach 300



Basic Probability
Discrete Random Variables

Continuous Random Variables

Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations

Computing Probabilities via Conditioning

If A is an event of interest involving random variable X , the
calculation Pr (A) can sometimes be easily computed by
conditioning on X .
In particular,

Pr (A) =

∫ ∞
−∞

Pr (A | X = x) dFX (x) .

This is a natural generalization of the law of total probability. They
coincide if X is discrete and we assign exclusive and exhaustive
events Bi to all possible outcomes of X .
As an (important) example, if X and Y are continuous random
variables and event A = {X < aY }, then, conditioning on Y ,

Pr (A) = Pr (X < aY ) =

∫ ∞
−∞

Pr (X < aY | Y = y) fY (y) dy

=

∫ ∞
−∞

FX |Y (ay) fY (y) dy .

Marc S. Paolella Fundamental Probability: A Computational Approach 301



Basic Probability
Discrete Random Variables

Continuous Random Variables

Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations

Computing Probabilities via Conditioning (2)

More generally, if event B = {X − aY < b}, then

Pr (B) =

∫ ∞
−∞

Pr (X − aY < b | Y = y) fY (y) dy

=

∫ ∞
−∞

FX |Y (b + ay) fY (y) dy .

Note that Pr (B) is the c.d.f. of X − aY .

As Pr (B) is the c.d.f. of X − aY , differentiating with respect to b
gives the p.d.f. of X − aY at b,

fX−aY (b) =

∫ ∞
−∞

d

db
FX |Y (b + ay) fY (y) dy

=

∫ ∞
−∞

fX |Y (b + ay) fY (y) dy ,

assuming that we can differentiate under the integral.
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Computing Probabilities via Conditioning (3)

If X and Y are independent, then Pr (B) and density fX−aY (b)
simplify to∫ ∞

−∞
FX (b + ay) fY (y) dy and

∫ ∞
−∞

fX (b + ay) fY (y) dy ,

respectively.

With a = −1, the latter reduces to

fX+Y (b) =

∫ ∞
−∞

fX (b − y) fY (y) dy ,

which is referred to as the convolution of X and Y .
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Convolution of i.i.d. Cauchy Random Variables

The p.d.f. of the sum S of two independent standard (i.e., location
zero and scale one) Cauchy r.v.s can be computed via

fX+Y (b) =

∫ ∞
−∞

fX (b − y) fY (y) dy ,

using fX (x) = fY (x) = π−1
(
1 + x2

)−1
, or

fS (s) =
1

π2

∫ ∞
−∞

1

1 + (s − x)2

1

1 + x2
dx .
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Convolution of i.i.d. Cauchy Random Variables

The calculation of this integral is not trivial. The Appendix of the
book shows how to do this; it results in

fS (s) =
1

π

1

2

1

1 + (s/2)2 ,

or S ∼ Cau (0, 2).

A similar calculation shows that, if Xi
ind∼ Cau (0, σi ), then

S =
n∑

i=1

Xi ∼ Cau (0, σ) , σ =
n∑

i=1

σi . (15)

An important special case of (15) is for σ = 1/n, so that the sample
mean of n iid standard Cauchy r.v.s, X̄ = n−1(X1 + · · ·+ Xn), also
follows a standard Cauchy distribution.
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Example: Ratio of Independent Exponentials

Let Xi
ind∼ Exp (λi ), i = 1, 2 and define R = X1/X2.

As Pr (X2 > 0) = 1, the distribution of R is

FR (r) = Pr (R ≤ r) = Pr (X1 ≤ rX2) = Pr (X1 − rX2 ≤ 0) .

Recall that

Pr (X < aY ) =

∫ ∞
−∞

Pr (X < aY | Y = y) fY (y) dy

=

∫ ∞
−∞

FX |Y (ay) fY (y) dy .
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Example: Ratio of Independent Exponentials

Using this,

FR (r ;λ1, λ2) =

∫ ∞
0

FX1 (rx2) fX2 (x2) dx2

=

∫ ∞
0

(
1− e−λ1rx2

)
λ2e−λ2x2 dx2

= 1− λ2

∫ ∞
0

e−x2(λ1r+λ2) dx2

= 1− λ2

λ1r + λ2

=
λ1r

λ1r + λ2
.

Marc S. Paolella Fundamental Probability: A Computational Approach 307



Basic Probability
Discrete Random Variables

Continuous Random Variables

Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations

Example: Ratio of Independent Exponentials

The density is

fR (r ;λ1, λ2) =
∂FR (r)

∂r
=

λ1λ2

(λ1r + λ2)2 I(0,∞) (r)

=
c

(r + c)2 I(0,∞) (r) ,

where

c =
λ2

λ1
=

E[X1]

E[X2]
.

For λ = λ1 = λ2, this is just fR (r ;λ) = (1 + r)−2. This is similar
(but not the same) as a Cauchy random variable.

Observe that the mean (and higher moments) of R do not exist.
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Ratio of Standard Normals

We wish to show that, if X and Y are independent N (0, 1) r.v.s,
then Z = X/Y follows a Cauchy distribution with
FZ (z) = 1/2 + (arctan z) /π.

To see this, write

FZ (z) = Pr (X/Y < z) = Pr (X − zY < 0, Y > 0)

+ Pr (X − zY > 0, Y < 0) ,

which is obtained by integrating the bivariate normal c.d.f. as

FZ (z) =

∫ ∞
0

∫ zy

−∞

1

2π
exp

(
−1

2

(
x2 + y 2

))
dx dy

+

∫ 0

−∞

∫ ∞
zy

1

2π
exp

(
−1

2

(
x2 + y 2

))
dx dy

=: I1 + I2.
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Ratio of Standard Normals

Consider the case 0 < z <∞ or 0 < z−1 <∞ so that the range of
integration is given in the left panel of the figure, where
I1 = (a) + (b) and I2 = (c) + (d).

From the spherical symmetry of the (zero-correlated) bivariate
normal and the fact that it integrates to one, (b) = (d) = 1/4 and
(a) = (c) = θ/2π so that

FZ (z) =
1

2
+
θ

π
=

1

2
+

arctan z

π
,

from the right panel with tan θ = x .

A similar analysis holds for z < 0.
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Ratio of Standard Normals

The Cauchy c.d.f. is given by I1 + I2 (left); tan θ = x0/y0 = z (right)
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Conditioning on Ordering Information

Let the lifetime of two electrical devices, X1 and X2, be r.v.s with joint
p.d.f. fX1,X2 .
Interest centers on the distribution of the first device, given the
information that the first device lasted longer than the second.
The conditional c.d.f. of X1 given that X1 > X2 is

FX1|(X1>X2) (t) = Pr (X1 ≤ t | X1 > X2) =
Pr ((X1 ≤ t) ∩ (X1 > X2))

Pr (X1 > X2)

=

∫∫
y<x, x≤t

fX1,X2 (x , y) dy dx∫∫
y<x

fX1,X2 (x , y) dy dx

=

∫ t

−∞
∫ x

−∞ fX1,X2 (x , y) dy dx∫∞
−∞

∫ x

−∞ fX1,X2 (x , y) dy dx
=

I (t)

I (∞)
, (16)

where I (t) is defined as the numerator expression in (16).
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Conditioning on Ordering Information

If we now assume that X1 and X2 are independent, then

I (t) =

∫ t

−∞

∫ x

−∞
fX1 (x) fX2 (y) dy dx =

∫ t

−∞
fX1 (x) FX2 (x) dx , (17)

and further assuming that X1 and X2 are iid with common p.d.f. fX ,
integrating by parts with u = FX (x) and dv = fX (x) dx gives

I (t) = [FX (t)]2 −
∫ t

−∞
FX (x) fX (x) dx = [FX (t)]2 − I (t) ,

or

I (t) =
1

2
[FX (t)]2

, (18)

so that

FX1|(X1>X2) (t) =
[FX (t)]2

/2

[FX (∞)]2
/2

= [FX (t)]2
.
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Conditioning on Ordering Information

If Xi
iid∼ Exp (λ), FX1|(X1>X2) (t;λ) =

[
1− e−λt

]2
.

If interest instead centers on the conditional c.d.f. of X1 given that
X1 < X2, then, similar to the above derivation and for t < y ,

FX1|(X1<X2) (t) =

∫ t

−∞
∫∞
x

fX1,X2 (x , y) dy dx∫∞
−∞

∫∞
x

fX1,X2 (x , y) dy dx
=

J (t)

J (∞)
,

and in the iid case, using (17) and (18) gives

J (t) =

∫ t

−∞
fX (x) (1− FX (x)) dx

=

∫ t

−∞
fX (x) dx −

∫ t

−∞
fX (x) FX (x) dx

= FX (t)− 1

2
[FX (t)]2

.
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Conditioning on Ordering Information

Thus,

FX1|(X1<X2) (t) =
J (t)

J (∞)
=

FX (t)− 1
2 [FX (t)]2

1− 1
2

= 2FX (t)− [FX (t)]2

= 1− (1− FX (t))2
.

If Xi
iid∼ Exp (λ), i = 1, 2, then

FX1|(X1<X2) (t) = 2
(
1− e−λt

)
−
(
1− e−λt

)2
= 1− e−2λt ,

showing that X1 | (X1 < X2) ∼ Exp (2λ).

These results in the iid case can be generalized in the context of the
study of order statistics.
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Conditioning on Ordering Information

The Matlab code

lam1=1/10; lam2=1/10; s=10000; X=exprnd(1,s,1)/lam1;

Y=exprnd(1,s,1)/lam2; xly=X(find(X<Y)); hist(xly,40)

can be used to simulate the density of X1 | (X1 < X2) when X1 and X2

are independent.
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Course Outline
1 Basic Probability

Combinatorics
The Gamma and Beta Functions
Probability Spaces and Counting
Symmetric Spaces and Conditioning

2 Discrete Random Variables
Univariate Random Variables
Multivariate Random Variables
Sums of Random Variables

3 Continuous Random Variables
Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations
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Continuous Multivariate Transformations

Earlier, we derived an expression for the p.d.f. of Y = g (X ) for
continuous r.v. X as fY (y) = fX (x) | dx/ dy |, where x = g−1 (y).

The generalization to the multivariate case is more difficult to
derive, but the result is straightforward to implement.

Let X = (X1, . . . ,Xn) be an n-dimensional continuous r.v. and
g = (g1 (x) , . . . , gn (x)) a continuous bijection which maps SX, the
support of X, onto SY, a subset of Rn.

Marc S. Paolella Fundamental Probability: A Computational Approach 318



Basic Probability
Discrete Random Variables

Continuous Random Variables

Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations

Continuous Multivariate Transformations (2)

Then the p.d.f. of Y = (Y1, . . . ,Yn) = g (X) is given by

fY (y) = fX (x) |det J| ,

where x =
(
g−1

1 (y) , . . . , g−1
n (y)

)
and

J =



∂x1

∂y1

∂x1

∂y2
· · · ∂x1

∂yn
∂x2

∂y1

∂x2

∂y2

∂x2

∂yn
...

...
. . .

...
∂xn
∂y1

∂xn
∂y2

· · · ∂xn
∂yn


=


∂g−1

1 (y)
∂y1

∂g−1
1 (y)
∂y2

· · · ∂g−1
1 (y)
∂yn

∂g−1
2 (y)
∂y1

∂g−1
2 (y)
∂y2

∂g−1
2 (y)
∂yn

...
...

. . .
...

∂g−1
n (y)
∂y1

∂g−1
n (y)
∂y2

· · · ∂g−1
n (y)
∂yn


is the Jacobian of g.

Observe that this reduces to the equation used in the univariate case.
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Example: Convolution

Let X and Y be continuous r.v.s with joint distribution fX ,Y and
define S = X + Y .

The density fS involves convolution, as was derived above.

To derive the result using a bivariate transformation, a second,
“dummy” variable is required, which can often be judiciously chosen
so as to simplify the calculation.

In this case, we take T = Y , which is both simple and such that
(s, t) = (g1(x , y), g2(x , y)) = (x + y , y) is a bijection.
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Example: Convolution

So, with S = X + Y and T = Y , the inverse transformation is easily
seen to be (x , y) =

(
g−1

1 (s, t), g−1
2 (s, t)

)
= (s − t, t), so that

fS,T (s, t) = |det J| fX ,Y (x , y), where

J =

[
∂x/∂s ∂x/∂t
∂y/∂s ∂y/∂t

]
=

[
1 −1
0 1

]
, |det J| = 1,

or fS,T (s, t) = fX ,Y (s − t, t). Thus,

fS (s) =

∫ ∞
−∞

fX ,Y (s − t, t) dt,

as was shown earlier for X and Y independent.
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Computational trick

It is sometimes computationally advantageous to use the fact that

|J| =
∣∣J−1

∣∣−1
, where

J−1 =



∂y1

∂x1

∂y1

∂x2
· · · ∂y1

∂xn
∂y2

∂x1

∂y2

∂x2

∂y2

∂xn
...

...
. . .

...
∂yn
∂x1

∂yn
∂x2

· · · ∂yn
∂xn


=


∂g1(x)
∂x1

∂g1(x)
∂x2

· · · ∂g1(x)
∂xn

∂g2(x)
∂x1

∂g2(x)
∂x2

∂g2(x)
∂xn

...
...

. . .
...

∂gn(x)
∂x1

∂gn(x)
∂x2

· · · ∂gn(x)
∂xn

 .

In the univariate case this reduces to dy/ dx = 1/ ( dx/ dy).
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Example of using
∣∣J−1

∣∣
Let X and Y be cont. r.v.s with p.d.f. fX ,Y , and P := XY .

Let Q = Y so that the inverse transformation of {p = xy , q = y} is
{x = p/q, y = q}, and fP,Q (p, q) = |det J| fX ,Y (x , y), where

J =

[
∂x/∂p ∂x/∂q
∂y/∂p ∂y/∂q

]
=

[
1/q −pq−2

0 1

]
, |det J| =

1

|q|
,

or fP,Q (p, q) = |q|−1 fX ,Y (p/q, q).

Thus,

fP (p) =

∫ ∞
−∞
|q|−1 fX ,Y

(
p

q
, q

)
dq.

Notice also that JJ−1 = I, where

J−1 =

[
∂p/∂x ∂p/∂y
∂q/∂x ∂q/∂y

]
=

[
y x
0 1

]
=

[
q p/q
0 1

]
,
∣∣det J−1

∣∣ = |q| .
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Exercise 1

For m > 2, let B ∼ Beta ((m − 1) /2, (m − 1) /2) independent of
X ∼ χ2

m with p.d.f.

fX (x ; m) =
1

2m/2Γ (m/2)
xm/2−1e−x/2I(0,∞) (x) .

Let S = 2B − 1, Y =
√

X , and P = SY . Derive an integral expression
for fP (p; m) and, for m = 3, simplify it and show that, for m = 3,
P ∼ N (0, 1).

Verify using numeric integration that P is N (0, 1) for any value of
m > 2. This is proven in, e.g., page 90 of Ellison (1964).2

2JASA 59, Two Theorems for Inferences about the Normal Distribution with
Applications in Acceptance Sampling, pages 89-95.
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Solution, 1/3

The p.d.f. of S is

fS (s;m) =

∣∣∣∣dbds

∣∣∣∣ fB (b)

=
1

2

1

B
(
m−1

2
, m−1

2

) ( s + 1

2

)m−1
2
−1(

1− s + 1

2

)m−1
2
−1

I(0,1)

(
s + 1

2

)
=

22−m

B
(
m−1

2
, m−1

2

) (1− s2
)m−3

2 I(−1,1) (s) .

For m = 3, B is uniform, and fS (s; 3) easily reduces to what we expect,
(1/2) I(−1,1) (s).
For the density of Y ,

fY (y) =

∣∣∣∣dxdy

∣∣∣∣ fX (x) = 2y
1

2m/2Γ (m/2)

(
y 2
)m/2−1

e−y2/2I(0,∞)

(
y 2
)

=
21−m/2

Γ (m/2)
ym−1 exp

{
−y 2/2

}
I(0,∞) (y) .
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Solution, 2/3

Then the density of P = SY is

fP (p; m) =

∫ 1

−1

1

s
fS (s) fY (p/s) ds

=
Γ (m − 1) 23(1−m/2)

Γ
(
m−1

2

)
Γ
(
m−1

2

)
Γ (m/2)

×
∫ 1

0

1

s

(
1− s2

)m−3
2

(p

s

)m−1

exp
{
− (p/s)2

/2
}

ds,

where the integral starts at zero because fY (p/s) only has support on
(0,∞).
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Solution, 3/3

For m = 3, recall Γ (3/2) =
√
π/2, then substitute u = p/s and then (for

p > 0) v = −u2/2 to get

fP (p; 3) =
1√
2π

∫ 1

0

1

s

(p

s

)2

exp

{
− (p/s)2

2

}
ds

=
1√
2π

∫ ∞
p

u exp

{
−u2

2

}
du =

1√
2π

∫ −p2/2

−∞
evdv

=
1√
2π

exp
{
−p2/2

}
,

so that, for m = 3, P is indeed standard normal.

The general expression does not seem to simplify, though numerically
integrating it for any m > 2 shows that P ∼ N (0, 1).
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Exercise 2

Let Xi
i.i.d.∼ Unif (0, 1), i = 1, . . . n, let s and t be values such that

0 < s < t < 1, and define Nn (s) =
∑n

i=1 I[0,s] (Xi ), i.e., Nn (s) is
the number of Xi which are less than or equal to s.

Let X = Nn (s), Y = Nn (t) and D = Y − X . Prove that
(D | X = x) ∼ Bin (n − x , (t − s) /1− s).
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Hint to Exercise 2

What is fX ,Y and fX ? From those, bivariate transformation to fD,M with
M = X , then compute fD|M .
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Solution, 1/3

We first want the joint p.m.f. of X and Y , fX ,Y (x , y).

From the definition of X and Y , x of the Xi are in [0, s], and y values in
[0, t], or y − x values in (s, t], and the remaining n− y are greater than t.

Because the Xi are i.i.d., the joint distribution of X and Y is just
trinomial, i.e.,

fX ,Y (x , y ; n, s, t) =

(
n

x , y − x , n − y

)
sx (t − s)y−x (1− t)n−y I (0 ≤ x ≤ y ≤ n)

and the marginal of X is binomial,

fX (x ; n, s) =

(
n

x

)
sx (1− s)n−s I (0 ≤ x ≤ n) .

Marc S. Paolella Fundamental Probability: A Computational Approach 330



Basic Probability
Discrete Random Variables

Continuous Random Variables

Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations

Solution, 2/3

Let D = Y − X and M = X , so that X = M and Y = D + M. Then

fD,M (d ,m) = |det J| fX ,Y (x , y) ,

where

J =

[
∂x/∂d ∂x/∂m
∂y/∂d ∂y/∂m

]
=

[
0 1
1 1

]
, |det J| = −1,

so that fD,M (d ,m) = fX ,Y (m, d + m) or(
n

m, d , n − (d + m)

)
sm (t − s)d (1− t)n−(d+m) I (0 ≤ m ≤ d + m ≤ n) .
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Solution, 3/3

Thus, the conditional distribution of D given M is

fD|M (d | m) =
fD,M (d ,m)

fM (m)
or

(
n
m

)(
n−m
d

)
sm (t − s)d (1− t)n−(d+m)(
n
m

)
sm (1− s)n−m

I (0 ≤ m ≤ d + m ≤ n) I (0 ≤ m ≤ n)

=

(
n −m

d

)
(t − s)d (1− t)n−(d+m)

(1− s)n−m (1− s)d (1− s)−d
I (0 ≤ d ≤ n −m)

=

(
n −m

d

)(
t − s

1− s

)d (
1− t − s

1− s

)(n−m)−d

I (0 ≤ d ≤ n −m) .

That is, (D | M = m) ∼ Bin (n −m, (t − s) /1− s), or
(D | X = x) ∼ Bin (n − x , (t − s) /1− s), as was to be shown.
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Example 9.3: Sums of i.i.d. Exponential is Gamma

Let Xi
iid∼ Exp (λ), i = 1, . . . , n, and define Yi = Xi , i = 2, . . . , n,

and S =
∑n

i=1 Xi . This is a 1–1 transformation with Xi = Yi ,
i = 2, . . . , n, and X1 = S −

∑n
i=2 Yi . The inverse Jacobian is

J−1 =


∂S
∂x1

∂S
∂x2

∂S
∂x3

· · · ∂S
∂xn

∂y2

∂x1

∂y2

∂x2

∂y2

∂x3
· · · ∂y2

∂xn

...
...

...
. . .

∂yn
∂x1

∂yn
∂x2

∂yn
∂x3

· · · ∂yn
∂xn

 =


1 1 1 · · · 1
0 1 0 · · · 0
...

...
...

. . .

0 0 0 · · · 1

 ,

with determinant 1, so that

fS,Y (s, y) = 1 · fX (x) = λne−λsI(0,∞)

(
s −

∑n

i=2
yi
) n∏

i=2

I(0,∞) (yi )

= λne−λsI(0,∞) (s) I(0,s)

(∑n

i=2
yi
) n∏

i=2

I(0,∞) (yi ) .
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Example 9.3: Sums of i.i.d. Exponential is Gamma

By expressing the indicator functions as
I(0,∞) (s) I(0,s) (yn) I(0,s−yn) (yn−1) · · · I(0,s−yn−···−y3) (y2), the Yi can
be integrated out to give the density of S :

fS (s) = λne−λs
∫ s

0

∫ s−yn

0

· · ·
∫ s−yn−···−y3

0

dy2 · · · dyn−1 dyn I(0,∞) (s) .

Taking n = 5 for illustration and treating quantities in square
brackets as constants (set them to, say, t to help see things), we get∫ s

0

∫ s−y5

0

∫ s−y5−y4

0

∫ s−y5−y4−y3

0

dy2 dy3 dy4 dy5

=

∫ s

0

∫ s−y5

0

∫ [s−y5−y4]

0

([s − y5 − y4]− y3) dy3 dy4 dy5

=
1

2

∫ s

0

∫ [s−y5]

0

([s − y5]− y4)2 dy4 dy5 =
1

2

1

3

∫ s

0

(s − y5)3 dy5 =
1

2

1

3

1

4
s4.
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Example 9.3: Sums of i.i.d. Exponential is Gamma

We conclude without a formal proof by induction that

fS (s) =
λn

(n − 1)!
e−λssn−1I(0,∞) (s) ,

or that S ∼ Gam (n, λ).

Notice that the above example also implies that, if

Si
ind∼ Gam (ni , λ), then

∑k
i=1 Si ∼ Gam(n•, λ), where

n• =
∑k

i=1 ni .

This is a fundamental result useful in various probabilistic and
statistical contexts.

Marc S. Paolella Fundamental Probability: A Computational Approach 335



Basic Probability
Discrete Random Variables

Continuous Random Variables

Continuous Univariate Random Variables
Joint and Conditional Random Variables
Multivariate Transformations

Examples 9.5 and 9.6 as Practice

Calculate the joint distribution of S = X + Y and D = X − Y and

their marginals for X ,Y
iid∼ Exp (λ).

Same, but for standard normal, i.e., the joint and marginals of

S = Z1 + Z2 and D = Z1 − Z2 for Zi
iid∼ N (0, 1), i = 1, 2.
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Computer Exercise

Let Xi
iid∼ Gam (a, 1), i = 1, 2.

Then X1 + X2 ∼ Gam (2a, 1) and, for some c > 0,

S1 (c) := Pr (X1 + X2 > c) = 1− Γ̄c (2a) ,

while

S2 (c) := Pr (X1 > c) + Pr (X2 > c)

= 2 Pr (X1 > c) = 2
(
1− Γ̄c (a)

)
.

We wish to compare S1 (c) and S2 (c).
Clearly, as c → 0, S1 (c)→ 1, while S2 (c)→ 2, so that, as c → 0,
S1 (c) < S2 (c).

1 Verify numerically that, for a given a, there exists a c0 such that, for
all c > c0, S1 (c) > S2 (c).

2 Write a function (of a) to numerically compute that value of c such
that S1 (c) = S2 (c).
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Solution

1 For the first problem, the following code will produce the figure on
the next slide. Changing the range of c to, say, 6 to 10 confirms
that S1 (c) > S2 (c) also for more extreme c .

subplot(2,1,1) a=1; c=0.1:0.1:6; S1=1-gammainc(c,2*a);

S2=2*(1-gammainc(c,a)); plot(c,S1,’r-’,c,S2,’g--’)

legend(’S1’,’S2’), set(gca,’fontsize’,18)

2 For the second problem, the following function can be used.

function c = gamma_distribution_sums(a)

c=fzero(@(c) S_diff(c,a),[0 3*a]);

function d=S_diff(x,a)

S_1 = 1-gammainc(x,2*a);

S_2 =2*(1-gammainc(x,a));

d=S_2-S_1;
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Solution (2)

0 1 2 3 4 5 6
0

0.5

1

1.5

2

 

 

S1
S2
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Derivation of Student’s t Distribution

Let G ∼ N (0, 1) independent of C ∼ χ2
n with joint p.d.f.

fG ,C (g , c) =
1√
2π

exp

{
−1

2
g 2

}
1

2n/2Γ (n/2)
cn/2−1 exp

{
−c

2

}
I(0,∞) (c)

and define T = G/
√

C/n. With Y = C , the inverse transform is

G = T
√

Y /n and C = Y so that

J =

(
∂G/∂T ∂G/∂Y
∂C/∂T ∂C/∂Y

)
=

( √
Y /n ·

0 1

)
, |J| =

√
Y

n

and

fT ,Y (t, y) = |J| fG ,C (g , c)

=
1√
2π

2−n/2n−1/2

Γ (n/2)
yn/2−1/2 exp

{
−1

2

(
t

√
y

n

)2

− y

2

}
I(0,∞) (y) .
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Derivation of Student’s t Distribution

Let u = y
(
1 + t2/n

)
/2 so that

y =
2

1 + t2/n
u dy =

2

1 + t2/n
du

and

I =

∫ ∞
0

yn/2−1/2 exp

{
−y

2

(
1 +

t2

n

)}
dy

=

∫ ∞
0

(
2

1 + t2/n
u

)n/2−1/2

exp {−u} 2

1 + t2/n
du

=
2

1 + t2/n

(
2

1 + t2/n

)n/2−1/2 ∫ ∞
0

un/2−1/2 exp {−u} du

=

(
2

1 + t2/n

)n/2+1/2

Γ (n/2 + 1/2) .
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Derivation of Student’s t Distribution

Using this, the marginal of T , i.e.,
∫∞

0
fT ,Y (t, y) dy , simplifies to

fT (t) =
1√
n π

Γ ((n + 1) /2)

Γ (n/2)

(
1 + t2/n

)−(n+1)/2

=
n−1/2

B (n/2, 1/2)

(
1 + t2/n

)−(n+1)/2
,

showing that T ∼ tn.
As G and C are independent, E [T ] is

E [T ] = E

[
G√
C/n

]
=
√

nE [G ]E
[
C−1/2

]
= 0,

using the fact that E
[
C−1/2

]
is finite.

For the absolute value of T , using results from earlier examples,

E |T | =
√

nE |G |E
[
C−1/2

]
=

√
n
√

2/πΓ
(
n−1

2

)
√

2Γ
(
n
2

) =

√
nΓ
(
n−1

2

)
√
πΓ
(
n
2

) .
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The F Distribution

The ratio of two independent χ2 r.v.s, each divided by their
respective degrees of freedom (usually integers, although they need
only be positive real numbers), follows an F distribution.

That is, let Xi
ind∼ χ2

ni , and let Y1 = (X1/n1) / (X2/n2). Then
Y1 ∼ F (n1, n2).

The derivation is similar to that for the Student’s t distribution and
is in the text.
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Box Muller Transformation

A computationally efficient way of generating normal r.v.s uses the
transformation discovered by Box and Muller (1958).

Let Ui
iid∼ Unif (0, 1) and define

X1 = g1 (U1,U2) =
√
−2 ln U1 cos (2πU2) ,

X2 = g2 (U1,U2) =
√
−2 ln U1 sin (2πU2) .

It is straightforward to show (see Example 9.10) that Xi
iid∼ N (0, 1),

i = 1, 2.

Problem 9.7 shows how this transformation could have been
discovered.
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Gamma, Beta, Dirichlet

Let X = (X1, . . . ,Xn+1) with Xi
ind∼ Gam (αi , β), αi , β ∈ R, and define

S =
∑n+1

i=1 Xi , Y = (Y1, . . . ,Yn), Yi = Xi/S , so that SX = Rn+1
>0 and

SY,S =

{
(y1, . . . , yn, s) : 0 < yi < 1,

n∑
i=1

yi < 1, s ∈ R>0

}
.

Some work (see the text) shows (i) that

fS (s) =
βα

Γ (α)
sα−1e−βsI(0,∞) (s) ,

i.e., S ∼ Gam (α, β), (ii) that

fY (y) =
Γ (α)

Γ (α1) · · · Γ (αn+1)

n∏
i=1

yαi−1
i

(
1−

n∑
i=1

yi

)αn+1−1

I(0,1) (yi ) I(0,1)

(
n∑

i=1

yi

)
,

which is referred to as the Dirichlet distribution and denoted
Y ∼ Dir (α1, . . . , αn+1), and (iii) that S and Y are independent.
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Gamma, Beta, Dirichlet, cont.

An important special case is n = 1, yielding
S = X1 + X2 ∼ Gam (α1 + α2, β) independent of
Y = X1/ (X1 + X2) with distribution

fY (y) =
Γ (α1 + α2)

Γ (α1) Γ (α2)
yα1−1 (1− y)α2−1 I(0,1) (y) ,

i.e., Y ∼ Beta (α1, α2).

The derivation also confirms that

B (a, b) =

∫ 1

0

y a−1 (1− y)b−1 dy =
Γ (a) Γ (b)

Γ (a + b)
.
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Gamma, Beta, Dirichlet, cont.

Recall from Problem 7.20 that, if X ∼ F(n1, n2), then

B =
n1

n2
X

1 + n1

n2
X
∼ Beta

(n1

2
,

n2

2

)
, (19)

i.e.,

Pr (B ≤ b) = Pr

(
X ≤ n2

n1

b

1− b

)
,

which was shown directly using a transformation.

This relation can now be easily verified using the results from
previous examples.

For n1, n2 ∈ N, let Gi
ind∼ χ2

ni or, equivalently, Gi
ind∼ Gam (ni/2, 1/2).

Then, we know that

F =
G1/n1

G2/n2
∼ F (n1, n2) .
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Gamma, Beta, Dirichlet, cont.

We can then express B from (19) as

B =
n1

n2
F

1 + n1

n2
F

=

n1

n2

G1/n1

G2/n2

1 + n1

n2

G1/n1

G2/n2

=
G1

G2

1 + G1

G2

=
G1

G1 + G2
.

This also holds for any scale factor common to the Gi , i.e.,

if Gi
ind∼ Gam (αi , β), then

G1

G1 + G2
∼ Beta (α1, α2) .
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