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I advise my students to listen carefully the moment they decide to take no more
mathematics courses. They might be able to hear the sound of closing doors.
(James Caballero)

One difficult decision relates to how much of an effort one should make to acquire
basic technique, for example in mathematics and probability theory. One does
not wish to be always training to run the race but never running it; however, we
do need to train. (E. J. Hannan, 1992)

The beginning masters students at UZH majoring in Business, Data Science, Economics,
or Finance, have had a basic course in univariate calculus, and this, during their bachelor
studies. Having taught my beginning master’s level class in probability theory for 20 years in
a row, I know very well the average student level of understanding in calculus, linear algebra,
and basic mathematics. It is not very high. If the student’s goal is to get more involved in
advanced (micro- or macro-) economics, econometrics, quantitative risk management, asset
pricing, probability theory, higher level computational-based statistical methods and machine
learning, hardcore mathematical finance and financial engineering, etc., then he or she will
need to have a much stronger level of mathematics than the typical rudimentary level. Filling
this gap is the purpose of this course.

The term “advanced calculus” is often used synonymously with a course in real analysis
that focuses on the multivariate case and chronologically follows, obviously, a first course in
real analysis. In our course, we will in fact also cover the univariate case, but with more
emphasis on “computable, tangible things”. The next goal is to cover the important concepts
of series of numbers, and, even more relevantly, series of functions, reaching the immensely
important topic of Taylor series, which we do in both the univariate and multivariate case.
One of the goals of the course is to offer much practice by way of a large number of worked
examples, such as “trickier” univariate Riemann integrals. Then, in §3, we turn to a chosen
set of topics commonly covered in a course in real analysis, and which are, to some extent,
more abstract in nature, notably the study of compactness. This, and the other topics covered
there, will be essential when subsequently studying measure theory and the Lebesgue integral.

Then we investigate a select set of topics associated with multivariate calculus, notably
vectors and linear algebra, a deep dive into determinants, a detailed presentation of projection
and least squares; and then the crucial topics of (partial and total) differentiation, and
multivariate Riemann integration (importantly, Fubini’s theorem, exchange of derivative and
integral, and Leibnitz’ rule).

Differing from a typical calculus or advanced calculus course, we will start in the first
chapter with material that is highly relevant in general, and notably so with probability the-
ory, namely some more sophisticated combinatorics, generalized binomial theorems, gamma
and beta functions, and numerous non-trivial examples invoking this material. This mate-
rial is leveraged in §2.6.6 to cover Wallis’ product and Stirling’s approximation. Appendix
7.2 contains material on the so-called digamma and polygamma functions. A further nod
to probability theory is showing several ways of computing the univariate integral associ-
ated with the Gaussian distribution (Examples 6.21 and 6.22); and §6.7, covering some more
elaborate examples of multivariate transformations of random variables.



Throughout the document, many, but not all, results are proven. Understanding proofs
is essential in this course, but the main emphasis is on practical examples of a nontrivial
nature, going well beyond the trivial examples in a first, undergraduate, course in calculus
for students in the social sciences. I occasionally refer to results coming later in the document,
e.g., Example 1.10 involves a Riemann integral, and I refer to its linearity property, as stated
later, in §2.5.1. The reader is not expected to jump ahead and understand that material;
it is there for reference. In my experience, having perused and studied numerous excellent
mathematics books, this approach is quite common, because it is nearly unavoidable, notably
in presentations such as this one, which cover a variety of topics. The key is to not do it too
often!

It is worth mentioning that, in addition to the material herein, students aspiring to learn
one or more of the aforementioned topics, e.g., mathematical finance, quant risk management,
etc., will also require the sine qua non (indispensable and essential action, condition, or
ingredient) of linear algebra, advanced statistical methods, measure theory and the Lebesgue
integral, and (measure-theoretic) probability theory; not to mention computer coding skills.
This set is nicely captured in the preface of the well-received (2004, corrected 2009) book
Convex Optimization, by Boyd and Vandenberghe:

“The only background required of the reader is a good knowledge of advanced
calculus and linear algebra. If the reader has seen basic mathematical analysis
(e.g., norms, convergence, elementary topology), and basic probability theory, he
or she should be able to follow every argument and discussion in the book.”
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1 Preliminaries

The point of view that “natural number” cannot be defined would be contested
by many mathematicians who would maintain that the concept of “set” is more
primitive than that of “number” and who would use it to define “number”. Others
would contend that the idea of “set” is not at all intuitive and would contend that,
in particular, the idea of an infinite set is very nebulous. They would consider
a definition of “number” in terms of sets to be an absurdity because it uses a
difficult and perhaps meaningless concept to define a simple one.

(Harold M. Edwards, 1994, p. 461)

1.1 Sets, Supremum, and Functions

It turns out that, mathematically speaking, a precise definition of set is problematic. For our
purposes, it can be thought of simply as a well-defined collection of objects. This intuitive
description cannot be a definition, because the word “collection” is nothing but a synonym
for the word set. Nevertheless, in all contexts considered herein, the notion of set will be
clear. For example, if A = {n € N:n < 7}, then A is the set of positive integers less than
7,or A={1,2,...,6}. If a is contained in A, then we write a € A; otherwise, a ¢ A. A set
without any objects is called the empty set and is denoted (). A set with exactly one element

is a singleton set.

Let A and B be two sets. The following handful of basic set operations will be used

repeatedly throughout:

e the intersection of two sets, “A and B” (or “A intersect B”), denoted A N B. Each
element of AN B is contained in A, and contained in B; AN B ={x:x € A,z € B}.

e the union of two sets, “A or B” (or “A union B”), denoted AUB. An element of AUB

is either in A, or in B, or in both.

e set subsets, “A is a subset of B” or “A is contained in B” or “B contains A”, denoted
A C Bor B D A. If every element contained in A is also in B, then A C B. Like
the ordering symbols < and < for the real numbers; it is sometimes useful (if not more
correct) to use the notation A C B to indicate that A and B could be equal, and reserve
A C B to indicate that A is a proper subset of B, i.e., A C B but A # B; in words,
that there is at least one element in B that is not in A. Only when this distinction is

important will we use C. Also, () is a subset of every set.

e set equality, “A = B”, which is true if and only if A C B and B C A. To prove two

sets are equal, we prove A C B, and B C A.

e the difference, or relative complement, “B setminus A”, denoted B\ A or, sometimes

authors write B — A. It is the set of elements contained in B but not in A.

e If the set B is clear from the context, then it need not be explicitly stated, and the set
difference B\ A is written as A€, which is the complement of A. Thus, we can write

B\ A= Bn A

e the product of two sets, A and B, consists of all ordered pairs (a,b), such that a € A

and b € B; it is denoted A x B.



The first four previous set operations are extended to more than two sets in a natural
way, i.e., for intersection, if a € A;NAsN---NA,, then a is contained in each of the A;, and is
abbreviated by a € ()_; A;. A similar notation is used for union. To illustrate this for subsets,
let A, =1[1/n,1],ne {1,2,...},ie, Ay ={1} and Ay =[1/2,1) ={z:1/2 <z < 1}. Then
A C Ay C--yand U2, = (0,1] = {x : 0 < 2 < 1}. In this case, the A, are said to be
monotone increasing. If sets A; are monotone increasing, then

Similarly, the sets A; are monotone decreasing if Ay D Ay D -+, in which case

i=1

We will also need basic familiarity with the following sets: N = {1,2,...} is the set of all
natural numbers; Z = {0,1,—1,2,—2,...} is the set of all integers or Zahlen (German for
number); Q = {m/n, m € Z, n € N} is the set of all rational numbers (quotients); R is the
set of all real numbers; C is the set of complex numbers, and N ¢ Z ¢ Q ¢ R ¢ C. For
convenience and clarity, we also define Ryg ={z:z € R, 2 >0}, Ryy ={z:z € R, z > 1},
etc.; if only a range is specified, then the real numbers are assumed, e.g., z > 0 is the same as
r € Ryp. Also, we take X := RU {—o00, 00}, which is the extended real line. Letting a € R,
properties of X include oo + 0o = 0o+ a = 00, a - 00 = sgn(a) - 0o, but co — 00, 0o/0, etc.,
are undefined, as remains 0/0.

We make use of the common abbreviations 3 (“there exists”), 3 (“there does not exist”),
= (“implies”), iff (if and only if) and V (“for all” or, better, “for each”; see Pugh, 2002, p.
5). As an example, Vz € (0,1), Jy € (z,1). Also, the notation “A := B” means that A, or
the lhs (left hand side) of the equation, is defined to be B, or the rhs (right hand side).

Sets obey certain rules, such as AUA = A (idempotent); (AUB)UC = AU(BUC) and
(ANB)NC = AN(BNC) (associative); AUB = BUA and AN B = BN A (commutative);

Au(BNC)=(AUB)N(AUC) and AN(BUC)=(ANB)U(ANC)
(distributive); AUD = A and AN O = § (identity); and (A°)° = A (involution). Less

obvious are De Morgan’s laws, after Augustus De Morgan (1806-1871), which state that
(AUB)® = A°N B° and (AN B)® = A°U B°. More generally,

(U An> = (A and ( N An> = J 4 (1.3)
n=1 n=1 n=1 n=1
Example 1.1 Let B; := A; \ [AiN (A U Ay U---UA;_41)]. We wish to demonstrate that

It is useful to take © = 2, and draw a Venn diagram, confirming the result in this first case.
The general proof is an excuse to practice using basic set theory relations.



Use the above rules for sets to get

Bi=A\N[AiN(AiUAU---UA )] =AN[AN(AAUAU---UA )]
=AN[(ANA)UANA)U---UANA )
=AN[(ANA) N(ANA) NN (ANA_)]
= AN (ALUA) N(ASUAS) M- N (AT U AL )
= [A;N(AFUADN[A N (AU A NN [AN (AT U A5 )]
=[(Ain AU AN ADI NN (AN A U (AN A7)
=(A4NADN-N(ANAL) =4n(ATN---NAL)
=ANAU---UA ) =4 \(AU---UA;_4). |

Two sets are disjoint, or mutually exclusive, if AN B = (), i.e., they have no elements
in common. A set J is an indexing set if it contains a set of indices, usually a subset of
N, and is used to work with a group of sets A;, where ¢ € J. If A;, i € J, are such that
Uics 4i D €, then they are said to exhaust, or (form a) cover (for) the set Q. If sets A;,
i € J, are nonempty, mutually exclusive and exhaust €2, then they (form a) partition (of) Q.

Example 1.2 Let A; be monotone increasing sets, i.e., Ay C Ay C ---. Define By := Ay
and B; := A; \ (AL U AU ---UA;_1). We wish to show that, for n € N,

U4 =B (1.4)

The B; are clearly disjoint from their definition and such that B; is the “marginal contribu-
tion” of A; over and above that of (A3 U Ay U---U A;_1), which follows because the A; are
monotone increasing. Thus, B; = A;\ Ai_y = A;NAS . Ifw e U, Ai, then, because the A;
are increasing, either w € Ay (and, thus, in all the A;) or there ezists a value j € {2,...,n}
such that w € Aj but w ¢ A;, i < j. It follows from the definition of the B; that w € B; and
thus in \J;_, By, so that (i) U;_, A € UL, Bi.

Likewise, if w € |J._, B;, then, as the B; are disjoint, w is in exactly one of the B;,
say By, j € {1,2,...,n}. From the definition of B;, w € A;, sow € |J_, A;, so that (i1)
Ui, B: C Ui, Ai. Together, (i) and (i) imply that U;_, A = U, B;. Also, fori > 1,

Bi — A,L\(A1UA2UUAlfl):Azﬂ(AlLJAQUUAlfl)C
= AAAS AT = AL,

where the last equality follows from A; = Ufl:l A, (because the A; are monotone increasing)
and, thus, A5 =(Y,_, As,. |

For a,b € R with a < b, the interval (a,b) = {x € R:a < z < b} is said to be an open
interval, while [a,b] = {x € R : a <z < b} is a closed interval. In both cases, the interval has
length b—a. For a set S C R, the set of open intervals {O;}, for i € J with J an indexing set,
is an open cover of S if | J,.; O; covers S, i.e., if S C (J,.; O;. Let S C R be such that there
exists an open cover | J,.y O; of S with a finite or countably infinite number of intervals.
Denote the length of each O; as £ (0O;). If Ve > 0, there exists a cover | J,cy O; of S such that

3



then S is said to have measure zero. See also §6.2.3.

For our purposes, the most important set with measure zero is any set with a finite or
countable number of points. For example, if f and g are functions with domain I = (a,b) € R,
where a < b, and such that f (z) = g (z) for all x € I except for a finite or countably infinite
number of points in I, then we say that f and g differ on / by a set of measure zero. As
an example from probability, if U is a continuous uniform random variable on [0, 1], then the
event that U = 1/2 is not impossible, but it has probability zero, because the point 1/2 has
measure zero, as does any finite collection of points, or any countably infinite set of points
on [0,1], e.g., {1/n, n € N}.

Let S be a nonempty subset of R. We say S has an upper bound M if xt < M Vx € S, in
which case S is bounded above by M. Note that, if S is bounded above, then it has infinitely
many upper bounds.

(The Completeness Axiom): A fundamental property of R not shared by Q is
that, if S is a nonempty set that has an upper bound M, then S possesses a unique least
upper bound, or supremum, denoted supS. That is, 3U € R such that U is an upper bound
of S, and such that, if V' is also an upper bound of S, then V' > U.

This axiom can actually be made into a theorem and proven, albeit by assuming different,
related properties of the real numbers. See, for example, Stoll, 2021, p. 25 for some discussion
on construction of the real numbers and the relation to this axiom.!

If S is not bounded above, then sup S = co. Also, sup®) = —oo. Similar terminology
applies to the greatest lower bound, or infimum of S, denoted inf S. For example, let S =
{1/n : n € N}. Then maxS = supS = 1 and inf S = 0, but S has no minimum value.
Next, let S consist of the truncated values of v/2 with n € N decimal places, i.e., S =
{1.4,1.41,1.414,1.4142,...}. Then S C Q but supS = v2 ¢ Q.2

: If a subset S of R has a supremum, then it is unique.

Proof: Let v and u’ be two supremums of S. Then as « is an upper bound, and since
u is a least upper bound, we must have v < «'. Similarly, since u is an upper bound, and
since v’ is a least upper bound, we must also have v’ < u. It now follows that u = u’.

Let S be a nonempty subset of real numbers that is bounded below. Let
—S denote the set of all real numbers —x, where x belongs to S. Then inf(S) exists and

inf(S) = —sup(-29).

Proof: Let ¢ be a lower bound of S. Then, for all z € S, ¢ < x. So for all x € S,
—x < —/. That is, for all y € —5, y < —¢. Thus —S is bounded above because —/ is an

Tt also turns out that the nested intervals property (see §3.1) can be taken as the axiom instead of the
completeness property. Ash’s book Real Variables: With Basic Metric Space Topology, 2007, takes this
approach. Bloch’s book, The Real Numbers and Real Analysis, is yet more explicit about this; see the
preface, and his p. 104: “it turns out that the Heine-Borel Theorem is equivalent to the Least Upper Bound
Property, as is discussed in Section 3.5 and proved in Theorem 3.5.4.” See also his p. 166, and Theorem 3.5.4,
and p. 170. From Stoll, 2021, p. 124, “The nested intervals property can also be used to prove the supremum
property of R (Exercise 21 of his Sec. 3.3, p. 102). Another property of the real numbers that is equivalent
to the least upper bound property is the completeness property of R; namely, every Cauchy sequence of real
numbers converges.”

20bserve that any element in R can be arbitrarily closely approximated by an element in Q, which is the
informal description of saying that Q is dense in R. This is of enormous importance when actually working
with numerical values in an (unavoidably) finite precision computing world.



upper bound of —S. Since S is nonempty, it follows that there exists an element z € S,
and so we obtain that —x € —S. Hence —S' is nonempty.

As —S is nonempty and bounded above, it follows that sup(—.S) exists, by the Least
Upper Bound Property of R.

Since sup(—2S) is an upper bound of —S, we have that, for all y € —5, y < sup(-59).
That is, for all z € S, —z < sup(—5). Hence for all x € S, —sup(—S5) < z. So —sup(—25)
is a lower bound of S.

Next we prove that —sup(—S) is the greatest lower bound of S. Suppose that ¢ is a
lower bound of S such that —sup(—S) < ¢. Then for all z € S, —sup(—95) < ¢' < x.
That is, for all z € S, —x < —¢' < sup(—S). Hence, for all y € =S, y < —¢' < sup(—29).
So —¢" is an upper bound of —S, and —¢ < sup(—S), which contradicts the fact that
sup(—29) is the least upper bound of —S. Hence ¢/ < —sup(—25).

Consequently, inf S exists and inf S = —sup(—S5).

: Let A and B be subsets of R. Define
A+B={a+b:acA,jbe B} and A-B={ab:a€ A, be B}.
If A and B are nonempty and bounded above, then
sup(A + B) = sup A + sup B. (1.6)
What can you say about sup(A - B)?

Proof of (1.6): For sup(A + B) < sup A + sup B: Both A and B are non-empty and
bounded above, so @ = sup A and = sup B exist in R. Therefore, a + b < o +  for all
a € Aand b € B. This means « + 8 is an upper bound for A + B, and, by definition of
sup, v =sup(A+ B) < a+f.

For sup(A + B) > sup A + sup B: Let v = sup(A + B), which is an upper bound for
A+ B. Thena+b<~yforallae Aandbe B. Let b € B be arbitrary but fixed. Then
a <y—bforalla € A. Thus v—bis an upper bound for A and, hence, sup A = a < vy—0.
As this holds for all b € B, we also have b < y—a forallb € B. ThussupB = <~v—aq;
ie, a+ 3 <.

Let A = B = [—1,0], which are non-empty and bounded. Then (sup A)(sup B) = 0,
but sup(A - B) = 1. This serves as an example of two nonempty bounded sets A and
B for which sup(A - B) # (sup A)(sup B). If both A and B consist of nonnegative real
numbers, then sup(A . B) = Sup(A) Sup(B). See, e.g., https://math.stackexchange.com/
questions/46738.

: Let f and g be real-valued functions defined on a nonempty set X C R with
bounded ranges. Then

1.osup{f(z) +g(z):x € X} <sup{f(z): 2 € X} +sup{g(z) : 2 € X}.

Proof: Let v = sup{f(z) : « € X} and f = sup{g(z) : * € X}. The ranges
of f and g are bounded, so a and [ are finite, with f(z) + g(x) < a + § for
every € X. Thus, o + 8 is an upper bound for {f(z) + g(z) : € X}, and
sup{f(z) +g(z): v € X} <a+p.


https://math.stackexchange.com/questions/46738
https://math.stackexchange.com/questions/46738

2. If f(x) < g(x) for all z € X, then
sup{f(z) : z € X} <sup{g(z) : z € X}. (1.7)
This result is easy and important; we can call it monotonicity of the supremum.

Proof: Let a = sup{g(z) : = € X}, so that g(z) < a for all z € X. Thus, by
hypothesis, f(z) < a for all z € X. Therefore, « is an upper bound for {f(z) : x €
X}, and, as a consequence, sup{f(z):x € X} < a =sup{g(z): x € X}.

3. sup{f(z) + g(y) : v € X,y € X} = sup{f(z) : v € X} +sup{g(z) : v € X}.

Proof: Apply (1.6), taking A to be the range of f; and B to be the range of g.

As an example for which equality does not hold in (1), let X = [0,1], f(z) = =, and
g(x) = —z. The lhs is 0; the rhs is 1 + 0.

Definition: A relation between A and B is a subset of A x B.

Definition: If a relation f is such that, for each a € A, there is one and only one b € B
such that (a,b) € f, then f is also a function or mapping. One writes f : A — B and
b= f(a), with A referred to as the domain and B as the codomain or target.

When f is plotted on the plane in the standard fashion, i.e., with A on the horizontal
axis and B on the vertical axis, then a mapping satisfies the “vertical line test”.

In the following, let f be a function from A into B.
Definition: If £ C A, then f(F) is called the image of E under f, and is defined by

f(B) = {f(x) 2 € B},

Definition: For some subset C' C B, the pre-image of C' is the subset of the domain
defined by f~(C) :={a € A: f(a) € C}.

Definition: The subset of the codomain given by {b € B : Ja € A with f(a) = b} is the
range or image of f.

Definition: A mapping with codomain B = R is a real-valued function.

Definition: Let f be a function with domain A and let I € A be an interval. If f is
such that, Va,b € A, a < b = f(a) < f(b), then f is strictly increasing on I. Likewise,
if a < b= f(a) < f(b), then f is (weakly) increasing. The terms strictly decreasing and
(weakly) decreasing are similarly defined.

Definition: A function that is either increasing or decreasing is said to be monotone, while
a function that is either strictly increasing or strictly decreasing is strictly monotone.

Definition: The mapping f : A — B is injective or one—to—one if f(a;) = f(ag) implies
a; = ay. (That is, if a plot of f satisfies the “horizontal line test”.)

Definition: A mapping is surjective or onto if the range is the (whole) codomain.
Definition: A mapping is bijective if it is injective and surjective.

Definition: If f : A — B is bijective, then the inverse mapping f~' : B — A is bijective
such that f~1(b) is the (unique) element in A such that f(a) = b.



The following simple relations are of occasional great use, and can be proven via induction,
but also proven directly, as we do. Let n € N.

2=yt = (z—y) an*jyjfl. (1.8)
j=1
"yt = () Yy (<)Y for noodd. (1.9)
j=1
rh—y Tt =(y—x2)) "y, ifx#0and y £0. (1.10)

n -1
at/™ — b/ = (a - b) (Z al_j/”b(j_l)/") , a,b>0. (1.11)

J=1

We use (1.8) in Examples 1.3 and 1.4; and (1.10) in Example 2.7. For (1.8),

(x—y anj Zx" Il Zx" Iyl —anj Zx” Iyl = g™ — y".

For (1.9), replace y in (1.8) by —y. For (1.10), replace z and y in (1.8) by z! and y~!
respectively. For (1.11), use (1.8) with x = a'/", y = b'/™.

bl

Example 1.3 Define f(z) = z* for x > 0. Then the function f : [0,00) — R is strictly
increasing, because

w—v'=(u—-v)(u+v)>0 ifu>0v>0u>0, (1.12)

from (1.8). Function f is injective, but is not surjective, if the codomain is taken to be R. If
the codomain is specified as R>o, then f is surjective, and thus bijective. ]

Example 1.4 Let f : R — R be given by f(x) = 3. Then f is strictly increasing: From
(L3),

=P = (u—v) (v +uv+0*)  for all u,v. (1.13)

If u and v have the same sign, then uv > 0; thus u? + uv +v? > 0, so from (1.13), u® > v*
if u>wv. Ne:z;t z'fu >0 > v, then u® > 0 > v3. Finally, if u> v and either u or v equals 0,
then clearly u® > v3. Function f is a bijection. ]

The above two examples generalize to f : [0,00) — R for f(z) = 2", for n € N. Use of
(1.8) shows that f is strictly increasing. As shown in §2.2; f is continuous. Further, we can
use the Intermediate Value Theorem (2.60) to prove that f([0,00)) = [0,00); and (2.41) to
prove that f~!:[0,00) — R is continuous.

: Let f: X — Y be a function. The following properties hold:

1. For every A C X, A C f71(f(A)).
2. If Al g A2 g )(7 then f(Al) g f(AQ)



3. If Ay C X and A, C X, then
fALU Ag) = f (A1) U f(As). (1.14)
4. If A1 Q X and AQ Q )(7 then f(Al ﬂAg) Q f(Al) ﬂf(A2)

Proof: We show property 1 below. Consider property 4 on the image of an intersection.
If v € Ay N Ay, then f(z) € f(Ay) and f(x) € f(A2), so f(z) € f (A1) N f(As). Thus,
f(ATNAy) C f(A) N f(Ay). To see that the other direction does not hold, if there
are points a # b in X such that f(a) = f(b), then with A; = {a} and Ay = {b}, the
intersection A; N A, is empty, and hence f (A; N Ay) is the empty set, but f (A;) N f (As)
has one element.

s Let f: X — Y, and let {A;} be a family of (possibly uncountably many)
subsets of Y. Then

U A) =U s (N A) =0, @) (1.15)

SHAD) = [ (A)]° (1.16)

and

Proof:

oz c f! <UiAi) = f) el A =30 fln) € A
@Hi:xef‘l(Ai)<:>x€Uif_1(Ai).

o€ f! (ﬂiAZ) = f(2) € () A= Vi f(2) € A,
<:>W:xef*1(Ai)@xeﬂif”(Ai).

orc [TH(A) = f(x) € A = [f(x) ¢ A,
e=ad f(A) e e [fA]°

Let f: X — Y, and Ay, Ay C X. We want an example showing that f(A; N Ay) #
f(A)) N f(Ay). Let f: R — Rsq be given by f(x) = 2%, noting this is onto, but not one-
to-one. Let A; = (—1,0] and Ay = [0,1), so that A; N Ay = {0} and f(A; N Ay) = 0; and
f(A) = f(A2) =[0,1) = f(A1) N f(A2).

(Results on f~1[f(A)] and f[f~*(B)]): Let f: X =Y.

1. If AC X, then A C f![f(A)].
Proof: x € A= f(z) € f(A) =z € fHf(A)].

2. If BCY, then f[f~'(B)] C B. (Note the strict inequality.)

Proof: Recall A A B means conditions A and B both hold. (V is or).

ye ffN(B)] =3uy: [z B A [y= flzy)]
= f(zy) € B=>ye€ B.

2

As an example, we need a non-onto function, e.g., X =Y =R, f(x) = x*, so with

B=(-1,1), fﬁl<B) =1[0,1), and f(fil(B)) =1[0,1) C B.



3. [fonto Y] < [VBCY: f(f"(B)) =B].
Proof: Let f : X — Y beonto Y; and let B C Y. We need to prove f [f~'(B)] D B.

[ye BCY]|A[fonto] =3z, € X :y=flz,) =z, € {f({y})} (1.17)
= flzy) C f (T {w}) C F(F(B),

i.e., BC f[f Y(B)]. Observe in (1.17) we need to write z, € {f~*({y})} instead of
z, = f~(y) because f may not be one-to-one. If f is additionally one-to-one, then

it is a bijection, and A = f~![f(A)] and B = f [f~1(B)].

For mappings f : A — B and g : B — C, the composite mapping, denoted go f : A — C,
maps an element a € A to g(f(a)). We next show that, if f and g are injective, then so is
go f;and if f and g are surjective, then so is g o f. Thus, if f and g are bijective, then so is
golf.

(Composite functions, injectivity, surjectivity)
1. If f and g are injective, then so is g o f.
Proof: Both f and ¢ are injective, so f(z1) = f(z2) = x1 = x2 and g(y;) =

9(y2) = y1 = y2. Therefore, (go f)(z1) = (g0 f)(x2) = g(f(21)) = g(f(22)) =
f(z1) = f(xe) = 21 = 9. Hence, g o f is also injective.

2. If f and ¢ are surjective, then so is g o f.

Proof: Both f and g are surjective, so Yy € Y,3z € X such that f(z) = y and
Vz € Z,3y € Y such that g(y) = z. Thus, Vz € Z, 3z € X such that g(f(z)) = =.

3. If go f is injective, then f is injective.

Proof: (go f)(z1) = (g0 f)(x2) = 21 = 2. Thus f(z1) = f(22) = g(f(21)) =
9(f(x2)) = (g o f)(z1) = (g o [)(22) = 31 = 2.

4. If g o f is surjective, then g is surjective.
Proof: With y = f(z),

Vz € Z: dv € X such that (gof)(x) =2 = Vz € Z, Jy € Y such that g(y) = 2.



1.2 Fundamental Inequalities

If a € R, then the absolute value of a is denoted by |a|, and is equal to a if @ > 0, and —a if
a < 0. Clearly, a < |a| and, Ya,b € R, |ab| = |a| |b|. Observe that, for b € R+, the inequality
—b < a < b is equivalent to |a| < b, and, similarly,

—b<a<b <& |a|<b (1.18)
(One version of Bernoulli’s inequality):

Vh>0,VneN, (1+h)" > 1+ nh. (1.19)

Proof: (As in Stoll, p. 18, and noting that (1.19) actually holds for b > —1): For
n=1,(1+h)' =1+ h. As equality holds, the inequality is certainly valid. Assume that
the inequality is true when n = k,k > 1. Then for n = k+1, (1+h)** = (1+h)k(1+h).
By the induction hypothesis and the fact that (1 + k) > 0, we have

(1+h)* =1 +h)k1+h)
> (1+kh)(1+h) =1+ (k+1)h + kh?
> 1+ (k+1)h.

Thus, by the principle of mathematical induction, (1.19) holds for all n € N.
(Triangle Inequality): Vz,y € R,
|7+ y| < [z + [yl (1.20)
Proof: Square both sides to get
w4yl = (@ +y) =2"+2ey+y* and ([ +[y)* = 2® + 2[a| y| + ¢

Note xy < |xy| = |z||y|. Alternatively, note that, Va € R, —|a|] < a < |a|, so adding
— |z} <@ < [z to —[y[ <y < |y| gives — (|z] + |y|) < = +y < |z| + [y[, which, from
(1.18) with a = = + y and b = |z| + |y|, is equivalent to |z + y| < |z| + |y|. Also, with
z = —y, the triangle inequality states that, Vz,z € R, |z — z| < |z| + |2|.

(Reverse Triangle Inequality): Va,b € R,
la| = [bl] < a+0], or [la|—[b]] <[b—al. (1.21)

Proof: Write |a| = [(a + b) + (=b)| < |a + b| + ||, or |a] — |b] < |a + b|. Switching
a and b gives |b| — |a] < |a + b| or |la| — |b|]| < |a + b|. Replacing b with —b gives
lal = [bl] < la—b] = |b—al.

(Cauchy-Schwarz Inequality): For any points x = (z1,...,2,) andy = (y1,...,Yn)
in R" neN,

Jerys + gl < (@) () (1.22)

It is named after Augustin Louis Cauchy (1789-1857) and Hermann Schwarz (1843-1921),
and also referred to as Cauchy’s inequality or the Schwarz inequality. It was first published
by Cauchy in 1821.
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Proof: Let f(r) = S0, (ra; +y:)? = Ar? + Br + C, where A = Y. 22, B =
23" Jxy; and C = >0y As f(r) > 0, the quadratic Ar? + Br + C has one or
no real roots, so that its discriminant B? —4AC < 0, i.e., B?> < 4AC or, substituting,

(0 ) < (0, 22) (300, »2), which is (1.22) after taking square roots.

The Cauchy-Schwarz inequality is used to show the generalization of (1.20):
(Triangle Inequality): For any points x = (z1,...,2,) and y = (y1,...,¥y,) in

R™ n €N,

Ix +yll < [+ llyll, (1.23)
where

Ix|| = /22 + - + 22 (1.24)
is the Fuclidean norm of x = (x1,...,x,) € R™. There are other important norms for x € R"™;
see §3.2.

Proof: Using the above notation for A, B and C,

n

byl =3 by =S 123w+ S = A+ B C
=1 i=1 =1

=1

and, as B2 < 4AC, A+ B+ C <A+ 2VAC +C = (\/Z—i— \/6)2 Taking square roots
gives [[x +y| = VA+B+C < VA+VC = x| + |yl

Remark: In §3.2, we will see that the Cauchy-Schwarz inequality can be generalized to
Holder’s inequality, and the triangle inequality can be generalized to Minkowski’s inequality.
There are also analogous Holder and Minkowski inequalities for integrals.

11



1.3 Binomial and Generalized Binomial Theorems

The number of ways that n € N distinguishable objects can be ordered is given by
nn—1)(n—2)...2-1=:nl, 0l:=1,
pronounced “n factorial”. The number of ways that k objects can be chosen from n, 0 <
k < n, when order is relevant, is
n!
(n— k)’

which is referred to as the falling, or descending factorial.®
If the order of the k objects is irrelevant, then ny,) is adjusted by dividing by k!, the
number of ways of arranging the k chosen objects. Thus, the total number of ways is

U U S . _né)lk! _ (Z) @ 1, (1.26)

which is pronounced “n choose k” and referred to as a binomial coefficient for reasons which
will become clear below. Notice that, both algebraically and intuitively,

(0-(2)

Example 1.5 For k even, let A(k)=2-4-6-8-----k. Then

A(k):(1-2)(2-2)(3-2)(4-2)m(gz) :2W2(§>!.

nn—1)...(n—k+1)=ny = (1.25)

With m odd and C'(m)=1-3-5-7-----m,
(m+1)! (m+1)! (m+1)!

C = == = .
(m) (m+1)(m—=1)(m—=3)---6-4-2  A(m+1) 20m+1/2(mt))
Thus,
. . (27)! .
CQi-1)=1-35(2-1)= "5 i€l (1.28)
a simple result that we will use below. |

A very useful identity is

n n—1 n—1
- 1.2
which follows because

(Z) - m—LW”:(n—nf!c)!k!'(n;k*%)
=~ o Enk_—li!)!k! e —(Z)!_(?!— 0 (n ; 1) + (Zj)

3Similarly, we denote the rising, or ascending factorial, by n*l = n(n+41)...(n+k —1). There are
other notational conventions for expressing the falling factorial; for example, William Feller’s influential
volume I (first edition, 1950, p. 28) advocates (n)g, while Norman L. Johnson (1975) and the references
therein (Johnson being the author and editor of numerous important statistical encyclopediae) give reasons
for supporting n(¥) for the falling factorial (and n!*! for the rising). One still sees the rising factorial denoted
by (n),, which is referred to as the Pochhammer symbol, after Leo August Pochhammer, 1841-1920. It will
be made clear from context what is meant, so there will be no notational confusion.
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Example 1.6 Consider the sum S, =Y ,_, (Z) for n € N. Imagine that the objects under
consideration are the bits in computer memory; they can each take on the value 0 or 1.
Among n bits, observe that there are 2™ possible signals that can be constructed. But this is
what S, also gives, because, for a given k, (Z) 18 the number of ways of choosing which of the
n bits are set to one, and which are set to zero, and we sum this up over all possible k (0 to
n) so that it gives all the possible signals that n binary bits can construct. (That S,, = 2" also
follows directly from the binomial theorem, which is discussed below.) To prove the result via
induction, assume it holds for n — 1, so that, from (1.29),

" /n ~ n—1 n—1
> () -2+ Go)
Using the fact that (";):Ofori>m,
" /n “/n-1 " /n—1 " /n—1
— __on—1
2 () - ()26 R0

and, with 7 = k — 1, the latter term is

so that Y p_o () =20t +2mt=2(2"1) = 2", |
Example 1.7 To prove the identity

n—1 . n+1
1 n+11—1 1
i E — =P, N, 1.30

first note that P, = 1/2 and assume P, = 1/2. Then,

s - SCOET .
S ,
SR

(2
N J/

jmie1 1 . m— 1 1 2n . n—1 n +] 1 n+j+1
2 n 2 , J 2
=0

J

()G -G )T
2 n 2 n 2
Now note that
(2n — 1) (1)2” _ (@2n-1)(2n-2)--n (1)2”
n 2 n! 2

_ %271(271—1)(22!—2).--(%1) (%)%: (2:> <%>zn+17
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or

1 1

2Phpi=s+ P e P =

2 2
We will use this result in the next example; and prove (1.30) in a different way, in Example
1.2} below. |

Example 1.8 Prove, for N € N,

V6 =

This is equivalent to (substitute i = N —k, sok = N—i, and 2N —k = 2N —(N —i) = N+1i)

B ORS00

k=0 =0

S UOIOF

But this holds, because, from (1.30), it follows that

n—1 . 7
n+11—1 1
on-l — E -

and taking N =n — 1. We will use (1.31) to prove (7.22) is a valid pmf. |

or

By applying (1.29) recursively,
ny\ (n-1 n n—1
k)] k k—1
[ n—=1 n n—2 n n—2
N k k—1 k—2
[ n—1 n n—2 n n—3 n n—3
B k kE—1 k—2 k—3

ie.,

k
n n—i—1
(k)_;< . ) k < n. (1.32)
In (1.32), replace n with n + r, set k = n and rearrange to get
n+r & n+r—i—1 & 1+r—1
()R ()R o

14



which we will require in §7.3.

(Binomial Theorem): The relation

n n . .
"= Lyt 1.34
(z+y) Z(,L)xy (1.34)
=0
is simple, yet fundamental result that arises in numerous applications. Examples include

(x4 (—y)’ =a? =22y +¢%  (v+y)’ =2+ 32y + 32y + °,

o:(1—1)”:i (ZL) (—1)", 2":(1+1)":i CL)

i=0 =0
Proof: We use induction. Observe first that (1.34) holds for n = 1. Then, assuming
it holds for n — 1,

(n—1)
e D O G EVis

1=0
n—1 n n—1 n 1
_ - z+1 n— z+1)+ - z n 1— H—l

Then, with j =17+ 1,

n n—1
n—1\ . 4 n—1\ .
noo_ 3, n—j i, n—i
(z +y) 3 <j_1>:vy +.§ ( ; )xy

J =0
n—1 n—1
n ; n —
SRR B (i EVEES 3f (s FVE R
j=1 =1

proving the theorem.

Recall Bernoulli’s inequality (1.19), namely, VA > 0, Yn € N, (1 + h)" > 1 + nh, which
we proved via induction. It also follows from the binomial theorem (1.34):

(1+h)”=Z(7Z>hi:1+nh+ (Z>h2+---+nh”1+h"21+nh. 0

=0
The binomial theorem can be used for proving the following result, which, in turn, will
be used for proving (2.114) below.

: Let a € Ry and k € N. Then
lim a"/n" = oco. (1.35)

n—0o0

15



Proof: As in Lang, Undergraduate analysis, 2nd ed., 1997, p. 55: Write a = 1 + b, so

n(n—1)---(n—k‘)b,€Jrl

1+0)" =1 b+ ---
(1+0) +nb+ -+ 1)

All the terms in this expansion are positive. The coefficient of 5! can be written in the

form
nk+1

—— + terms with lower powers of n.

(k+1)!
For example, with k& = 3,

-1 -2 — 3+1 1 11 1
nn-Dm-@=3) w11, L
(34 1)! 3+ 1) 4 24 4
Hence,
(1 + b)n > n < C1 Ck+1 ka1
> WU S P
P T s
where ¢y, ..., cxy1 are numbers depending only on £ but not on n. Hence when n — oo,

it follows that the expression on the right also — oo, by the rule for the limit of a product
with one factor n/(k + 1)! — oo, while the other factor has the limit b as n — cc.

Example 1.9 Let f and g denote functions whose nth derivatives exist. Then, by using the
usual product rule for differentiation and an induction argument, we can show that

n

™ =3 (?) 0 gln=i). (1.36)

j=0

where fY9) denotes the jth derivative of f. This is sometimes (also) referred to as Leibniz’
rule. This is not the binomial theorem per se, though it has an obvious association. |

Example 1.10 Consider computing I = f_ll (2% — 1)j dz, for any j € N. From the binomial
theorem and the basic linearity property (2.167) of the Riemann integral,

=3 (4 ) e =S (1) ot

k=0 -1 k=0

which is simple to program and compute as a function of j. In fact, as shown in the next
example, integral I can also be expressed as

(_1)j22j+1

I = . , (1.37)
29 .
< ! ) (27 +1)
J
thus implying the charming and non-obvious combinatoric identity
J . k 2j
1 92j
>(1) g
k=0 ( J > (25 + 1)
J
as (—=1)7%* = (=1)* and cancelling a 2 and (—1)7 from both sides. |
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Example 1.11 We wish to show that
1 . )i+
/ (:L‘Q—l)]dm: ; ) ,
- ( J? ) (2 +1)

thus proving identity (1.37). Using integration by parts (stated and proven below, in (2.191)),

/_1 (22 = 1) do = /_1 (x — 1)/ (z+ 1) da

()

1 . mk Loy . .
= |- — 1) +1J+1] —/ , — 1) Nz +1)y"d
[j+¢x i B e [ A R A

= (_1)L/ (x — 1)z + 1) da.

J+1J.
Repeating this,

_ ] r — j—lx j21
- {@+mo+aﬂ D +”+]4

, [P -1 j—2 42
+(=1) /_1m(gg—1) (z+ 1)7*2dz

(L 1)2 JjG—1) lx_ 3=2( g J+2 4
—CY (J'+1)(j+2)/_1( e

~ v [y

230 o 92
(Uj(g}){(ﬁ;;i)l ]1(%‘?’15(22]’+1)' -

A generalization of the left hand sides of (1.25) and (1.26) is obtained by relaxing the
positive integer constraint on the upper term in the binomial coefficient:

Definition: For r € R and k € N,

(2) _ r(r—1)- k‘(r —k+ 1)’ (g) - )

The calculations clearly still go through, but the result will, in general, be a real number.
Notice that r can be negative, and k can exceed r. Listing 1 gives code for computing (1.38).

(_k”> _ (1)t <” *Z - 1). (1.39)

Note that, for n = 1, this reduces to (—1)k.

: Forn e N
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function c=c(n,k)
if any(n~=round(n)) | any(n<0), c=cgeneral(n,k); return, end

vv=find( (n>=k) & (k>=0) ); if length(vv)==0, c=0; return, end
if length(n)==1, nn=n; else nn=n(vv); end
if length(k)==1, kk=k; else kk=k(vv); end

c=zeros(1l,max(length(n),length(k)));
tl = gammaln(nn+1); t2=gammaln(kk+1); t3=gammaln(nn-kk+1);
c(vv)=round( exp ( t1-t2-t3 ) );

function c=cgeneral(nvec,kvec)
% assumes nvec and kvec have equal length and kvec are positive integers.
c=zeros(length(nvec),1);
for i=1:length(nvec)
n=nvec(i); k=kvec(i);
p=1; for j=1:k, p=p*(n-j+1); end
c(i) = p/gamma(k+1);
end

Program Listing 1: Computes (1.38) for possible vector values of n and k.

Proof: From (1.38),

—n —n)(-n—-1)---(—m—k+1 r(n)(n+1)---(n+k—1
(k):< )on 1) ) e 1) )

(1) (n—kllz—l).

This next example gives a useful result using (1.39), but requires using a Taylor series
expansion, which we will develop below in §2.6.11.%

Example 1.12 Let f(z) = (1 — )", t € R, and |z| < 1. With
flla)=—t(l—a)", f"@)=tt-1)1-2)",

and, in general, f9 (z) = (=1) ty (1 —x)"7, the Taylor series expansion (2.325) of f (x)
around zero 1s given by

—a) = f@) =3 (- tm Z(?)(—@j, 2] < 1, (1.40)

7=0 7=0 J

r(1+z) = 2;’00() lz| < 1. Fort = —1, (1.40) and (1.39) yield the familiar

41t is inspired from having seen it in my first class in statistics, using the book by Mood, Graybill, Boes,
Introduction to the Theory of Statistics, 3rd ed., 1976, p. 533; the latter author having been my instructor.
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(1-— x)_l = Z;io 2’ , while for t = —n, n € N, they imply
1—)"=%" ( j”) (—2y =3 (”*j )xﬂ, 2] < 1. (1.41)
=0 =0

Taylor’s theorem and properties of the gamma function are used to prove the convergence
of these expressions. Some references include Protter and Morrey, 1991, pp. 238-9; Hijab,
1997, p. 91; and Stoll, 2001, Thm. 8.8.4. |

We will use (1.41) below in Example 1.13.

. For n € N, 1
(2:) = (—1)" 2> (:ﬂf) (1.42)

We will need this for proving (7.25).

Proof: From (1.38), (1.42) follows from

(_§>:(_§)(_g)...(_n+;) (_1>"<2n—1><2n—3>~--3~1

n n! N 2 n!

N (_%)” % (2n) (2n(2—n;!) i U (%)n % (;nrz:

_ (%)% (—1)" (2:) (1.43)

Numerically checking (always a good idea), for n = 3, both sides numerically resolve to
—5/16; while for n = 4, we get, for both sides, 35/128. Similarly and easier, from (1.38),

Indeed, for n = 3, both sides numerically reduce to 5/16, while for n = 4, both sides give
35/128. Thus, multiplying (1.43) by (—1)", we also have

SRERONG!

Example 1.13 Consider proving the identity

Z m (m+8>(1—0)5:9‘m, meN, 0<6<Il. (1.44)

m+ s S
s=0

The result for m =1 is simple: Recall from (1.27), (1‘5“) = (11“5) =1+s. Then

o0

Zlis(lis)<1—9>5=i<1—6>8=e1.

s=0
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For the general case, observe that

m_(m+s)!  (mts—1! (m+s—1) (1) (—m>

m+s mls! (m—1)ls! s s

from (1.39). Using this and (1.41) implies that (1.44) is
3 (‘87“) (—(1—0) =(1—(1—0) " =06 n
s=0

A non-obvious extension of the binomial theorem is

n n—1

[n] _ N i, i) n] ._ ,
(z+y)" =3 (Z)x g =T+ ja), (1.45)
=0 7=0
forn=0,1,2,..., and x,y, a are real numbers. It holds trivially for n = 0, and is easy to see

for n =1 and n = 2, but otherwise appears difficult to verify, and induction gets messy and
doesn’t (seem to) lead anywhere. Perhaps somewhat surprisingly, the general proof involves
calculus; it is proven below in (1.70). Taking a = —1 results in a very important special case.
Assuming for now the validity of (1.45), we obtain the following. (Paolella, Fundamental
Probability, gives three direct proofs of (1.46).)

(Vandermonde): For x,y,n € N,

(x;ty) - XZ; (f) (ny_z) (1.46)

We require this for the next example; but more relevantly, it is the justification that the
probability mass function of a hypergeometric random variable indeed sums to one.

Proof: With a = —1,

B = () (k— 1) (k—2) - (k — (n— 1)) = '_:(k)m,

so that (1.45) yields, with k =z + v,

o= (7Y - Z () (0)a(,,) - =Z (")

Cancelling the n! yields the result.

Example 1.14 We wish to prove
(7”1—|—1”2+y—1):Zy:(r1+?—1)(r2+y—?—1)’ (1.47)
y i=0 g y—1

which we will invoke below for proving (1.70). From (1.39), it follows that

() () e () s ()
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so that the rhs of the desired equation is

() ()

(1é6) (_1)y( _(T1+r2) > (129) ( r1+r2+y_1 > ) ]

) )

Definition: If a set of n distinct objects is to be divided into k distinct groups, whereby
the size of each group is n;,i = 1,...,k, and Zle n; = n, then the number of possible
divisions is given by

n [ n n—mn n—mny — no e\ n!
n1,Ng, g ) ni o n3 N, nilng!- - nl’

Note how this reduces to the familiar combinatoric when k& = 2.

(Multinomial Theorem): For r,n € N,

(le>n: 2 (nlnn)qfﬁ" (1.48)

n:ne=n,n; >0

where n denotes the vector (ny,...,n,), and ne = > ;_, n;.

In words, the sum is taken over all nonnegative integer solutions to ».;_, n; = n, the
number of which ("+T_1), obtained using the usual “stars and bars” trick; see, e.g., Paolella,
Fundamental Probability, Ch. 2. With n = 2, this is just (37_; z:)* = Y1, D7, wiz;.

Example 1.15 The expression (x1 + x2 + x3)4 corresponds to r = 3 and n = 4, so that its

expansion will have (Z) = 15 terms, starting with

4 4 4
(z1 + 29+ x3)" = <4 0 O)x‘llxgazg—l— (0 A O)x°x§x§+ (O 0 4>x?x8x§

4 4
—|—<3 ) 0)&:3:6%:534— (3 0 1>z?x8x§+ e

or in full (and obtained fast and reliably from a symbolic computing environment)

(214 22+ 23)" = ¥+ 2t 423
+4xdzy + 4x:{’m3 + dx 23 + dwy s + dadas + 4oy
+623 75 + 6x7; + 62573
+12x%$2x3 + 129311'2:753 + 12931:@93%, [ |

The proof of (1.48) is by induction on r. For r = 1, the theorem clearly holds.
Assuming it holds for r = k, observe that, with S = Zle xi,

k+1 n n
n n! 7 n—i
<Z> - ) :st

n

! _
B Zz’!(nn—i)! 2 o) mexkﬂ’

=0 ni+-+ng=n—1
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from the binomial theorem and (1.48) for r = k. By setting ng.; = 4, this becomes

k+1 "

n;
g T; = E H xz;" ka,
. Mgy

ni+-tngp1=n

as the sum ) . , D i ‘tnp—n_i 18 equivalent to D g Fngpr=n for nonnegative n;. This
is precisely (1.48) for r = k + 1, proving the theorem.

Example 1.16 Using the power series expression of the exponential function
2 2d
f(x):exp()—1+:l?—|—§+§—l- (1.49)
we wish to attempt to show that [exp (z)]" = exp (nz). Applying the multinomial theorem
(1.48) to (1.49), and using (2.48), i.e., that [f (z)]" is a composition of two continuous
functions, thus allowing the passing of the limit, gives

" . s ' T s "

)" = (L%LZ—') =i (Z —,) - (130
Consider first the case with r = 2. Because the sum over s starts with a zero instead of a one,
we use the terms ng,ny, ..., instead of starting with ny. We begin by explicitly isolating the
terms that give rise to 2°, x', and 2% in the expansion. In particular, as 1™ =1 for ng > 1,
we seek the terms of the form x™ and (x*)"2 such that we get products of the form 2°, z*,
and x*. We let k indicate the power of x of this product, so the term with k = 0 will be
1m0z™ (22)"2 with ng =n, ny = ny = 0; the k = 1 term will be 1™ z™ (x*)™ with ng = n — 1,
ny =1, ny = 0; and finally, for k = 2, 1™z™ (2?)"2 with either ng =n — 1, n; =0, ny = 1,
orng=n—2,n =2, ny=0. The expansion, showing explicitly the k = 0,1,2 cases, is

z2\" n z\m (x?\"
e ) - HONE
< e 2) n.n;n.>0 (”077117”2) 1! (2!)
([ n 1n<:c>0 72 0+ n 1n_1<x>1 22\’
- \n,0,0 1! 2 n—1,1,0 1! 2!
. n 1n1($)0 z? 1+ n 1n2(x>2 22\’
n—1,0,1 1! 2! n—2,2,0 1! 2!
z\m 22\
1m0 <_> r -
+ Z <n0,n1,n2) 1‘ (2') +
ni1+2n9=3

The last line gathers terms that give rise to powers of x of k = 3, i.e., we require, as always,
ng + n1 + ne = n, and also ny + 2ny = 3. The remaining terms not shown are for k = 4,

k =5, etc.. Simplifying, we get

22\ " n! n n!
1 — ] =1 - 24 Ol
( o 2) e T o2 Tyt T e

:1—|—nx+n2 + A
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which indeed begins to look like f (nx) from (1.49).
Of course, more work is required to actually determine that

r k
= Z (no, ” ,m) H ™ = %

ni+2ns+---rn,.=k i=1

This might be amenable to induction; we do not attempt it here. For k = 3, the solutions to
n + 2ng + -+ -rn, = 3 (with ng such that Y ;_,n, = n) are (ng,...,n,) = (ny,3,0,...,0),
(ng,1,1,0,...,0), and (ny,0,0,1,0,...,0). Thus,

O — n! 1 N n! 11 N nt 1 n3
ST (n=3)13113 " (n—2)I1121 " (n—1)l61 3!
suggesting this method of proof is viable. ]
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1.4 Gamma and Beta Functions

Young people today love luxury. They have bad manners, despise authority, have
no respect for older people, and chatter when they should be working.

(Socrates, 470-399 BC)

There exist (infinitely many) elementary functions f such that there is no elementary
function F(x) satisfying F'(z) = f(z). Important (because of their application to real
problems) examples of such functions f include the gamma function discussed here, the beta
function discussed below, and the Gauss error function exp (z?). Perhaps surprisingly, it is
true also for ¢*/x and 1/Inz.

The gamma function can be expressed as

I (z) ::/ t"leTldt,  x € Ray. (1.51)
0

Being an improper integral, we need to confirm its existence. This requires use of the com-
parison test for improper integrals, given in (2.232):

Proof: In view of the 1nequahty t*=te=t < ¢*=1 for t > 0, the existence of the 1ntegral
f t*~le~tdt follows from that of fo e 1dt provided that z > 0. Next, since t**le=t — 0
as t — 400, we have, for some H > 0, t*~ 1 —t < Ht 2 for t > 1. Hence, the existence of
[Z = e dt follows from that of [ t‘2dt.

The convergence of the improper integral from 1 to infinity is also addressed in Ex-
ample 2.62.

As mentioned above, an expression for I' () in terms of “elementary” functions does not
exist for general x. However, a basic integration by parts (see (2.191)) shows that

Fz)=(x—-1)T(x-1), zeR.. (1.52)

Thus, for n € N,
['(n)=(Mn-1)0". (1.53)

As in Andrews, Askey and Roy (1999, pp. 2-3; see also p. 35), suppose that x > 0 and

n > 0 are integers. Write
(x +n)!

where (a), denotes the rising factorial (using Pochhammer’s notation; see above)
(@), =ala+1)---(a+n—1)forn>0, (a)=1,

and a is any real number. Rewrite (1.54) as

)
Je  nln®  (n+ 1)95.

. nl(n+1 _
(x+1), (z+1), ne
Since )
i Ve
n—00 n®
we conclude that
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This, along with (1.53), is (also) used to define the gamma function as

nln®
T =1i >0 1.55
@) =t e a7 (1.55)

known as the Gauss product formula. The equivalence of (1.51) and (1.55) is proven in
Appendix 7.1. We will require (1.55) below in Example 7.3. Appendix §7.1 contains further
results on the gamma (and beta) functions. We will also require the identity (we will need
it directly below, and for deriving the important relationship (1.64) between the gamma and
beta functions)

I'(a) = 2/ u?* e du. (1.56)
0

This follows directly by using the substitution u = z'/2 in (1.51) (recall z is positive), so that
r = u? and dz = 2udu. Another useful fact that follows from (1.56) and Example 6.21 (and
letting, say, v = v/2u) is that

T(1/2) = Vr, (1.57)

which we will use often.

Example 1.17 Recall the Gaussian probability density function. For Z ~ N (0,1), we wish
to compute the even positive moments, B [Z%], for r € N. With u = 22/2, z = (2u)"/?
(because z is positive), and dz = (2u)”"/* du,

o 2 o 1.2
E [Z*] :/_ 2 fy(2)dz = _—27T/0 2re 2 dz

2r+1—1/2 00

V2m  Jo B VT
That is, for s = 2r and recalling that T (a + 1) = al' (a) and T (1/2) = /7,

E([Z°] = %28/% (% (1+s)) =(s—1)(s=3)(s=5)-----3-1. (1.58)
This can also be written |
E(z] =E[z*] = &) (1.59)

2rpl’
which follows because (in the numerator, note (2r)! = (2r)(2r — 1)(2r — 2)!)

_ e[
M(r) {

=2r—1)M(r—-1),

2r — 1) 27“} (2(r—1))!
2rr!

2r 2r=1(r = 1)!

o E[Z%] = B[22 = M(3) = 5- M(2) =5-3- M(1) =5-3- 1.

With X = o0Z + pu ~ N (u,0?),
E[(X —w)”] =0"E[2%"] = (20%) 77T (7’ + %) : (1.60)

(The reader should directly check that (1.60) reduces to 3o for r = 2.) An expression for
the even raw moments of X can be obtained via (1.59) and the binomial formula applied to
(0Z + p)*.
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For odd moments, similar calculations give’®

00 1 0
/ 22r+1fZ (Z) dz = = / 2r+1€—%zzdz + / 27”+1e %z2dz
2T (r+1) 2T (r+1)

V2 V2

Thus, for example, the skewness and kurtosis of X = oZ + u is zero and three, respectively,
recalling that those measures are location and scale invariant.
To calculate E|Z| := E[|Z|], use the same u substitution as above to give

1 *° 2 >
o 2 0 1/2 —u —-1/2 o \/2
= —\/ﬁ/o (2u) " e (2u)” ' du = - (1.61)

where fooo e Ydu = 1. [ |

=0.

The beta function is an integral expression of two parameters, denoted B (+,-) and defined
to be

1
B(a,b) :== / 2271 —2) e, a,be Ry (1.62)
0

By substituting # = sin?# into (1.62) we obtain (and as directly used below) that

/2 /2
B (a,b) = / (sin”6) ot (cos? H)b_l 2sin  cos 6df = 2/ (sin6)** " (cos 0)*~ " do.
0 0

(1.63)
Closed-form expressions do not exist for general a and b; however, the identity
I'(a)T"(b)
B(a,b) = ———= 1.64
(@) = F o (1.64)

can be used for its evaluation in terms of the gamma function. There are several ways of
proving this. Here is one. Using polar coordinates x = rcos@, y = rsin@, dxdy = rdr df
(see (6.42) in §6.6) along with (1.56) and (1.63),

I'(a)((b) = 4/ / 2201y 1o~ (7% gy
0 0
2m 00
= 4/ / T2(a+b)*2+1€*7“2 (COS 0)26—1 (Sin 9)2b_1 drdb
0 0

- 4( /0 Hatd)-1g dr) ( /0 - (cos0)* ! (sin§)*! de)

= I'(a+0b)B(a,b).

5Tt should be clear from the symmetry of fz that ffk 22t (2)dz = 0 for any k > 0 (see §2.5.3).
Recall also from §2.5.3 that, for a general density fx, in order to claim that [*_ %! fx (z)dx = 0, both

limy o0 fok 22 fy (z) dr and —limg_ o0 ffk 22"+ fx (x) dz must converge to the same finite value.
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A direct proof without the use of polar coordinates can be found in Hijab (1997, p. 193). If
a = b, then, from symmetry (or use the substitution y = 1 — x) and use of (1.64), it follows

that 1o . )
_ - _ _ 1T%(a)
x“ll—xaldx:/ 2 T1—2) e = = , 1.65
/0 ( ) 1/2 ( ) 21" (2a) ( )

where T'2 (a) is just a shorthand notation for [T (a)]>. We will use this result now:

(Legendre’s duplication formula):

2a—1

NZ3
Proof: Use (1.65) with u =4z (1 — ) (and, as 0 <2 < 1/2, z = (1 — /1 —u) /2 and
dx = 1/(4v/1 — u)du) to get

['(2a) =

I(a)T (a+%). (1.66)

2(q 1/2 . 1/2 -
g(éa; = 2/0 M1 —2)" N dr = %/0 (4 (1 —2))*  dx
2 ' a—11 “12 0 o1-2a1 (@) T (1/2)
= 4[171 /(; u Z_L (1 — U) / du = 2 m

As T'(1/2) = /7, the result follows.

Example 1.18 From Legendre’s duplication formula (1.66) with i € N and using (1.28), we
obtain (but also note that the result follows directly from (1.53) and (1.57))

F( 1) VAT (20) V7 (2i-1)! T i (20)!

221D (4) 221 (j —1)I — 22%-12; 4

Vm@) T
b = g 2C(2i-1)
_ 1.3'5-@(2@'—1)\/;7 (1.67)

22
which is required, for example, when deriving properties of the noncentral Student’s t and
related distributions; see, e.q., Paolella, Intermediate Probability. [

l+§

Example 1.19 To express fol V1 —z4dx in terms of the beta function, let v = x* and
dx = (1/4)u*~" du, so that

! 1 [t 1.(13
/\/1—x4dm:—/ w1 - Pdu==B(>,2). |
; 1, 17 \12
Example 1.20 To compute
I:/x“(s—x)bda:, s€(0,1), a,b>0,
0
use u=1—2x/s (so that v = (1 —u) s and dr = —sdu) to get

I:/Osx“(s—:v)bdm:—3/10((1—u)s)a(s—(l—u)s)bdu

1
= s“+b+1/ (1—w)u’du=s"""B(b+1,a+1). [ |
0
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Example 1.21 To compute

[:/_1 (1—x2)a(1—x)bdx,

1

usel—2?=(1—-z)(1+z) andu= (1+=x) /2 (x =2u—1, de = 2du) to get
1
I= 22““’“/ u (1 —u)* P du =22 ' Bla+1,a+b+1). |
0

Example 1.22 The moment generating function (m.g.f.) of a location-zero, scale-one logis-
tic random variable is (with y = (1+e~%)""), for |t| < 1,

My (f) = E [¢¥] = / Z ()" (14 ) P da

:/0 (1_71/) ) vy (1 —y) ldy :/O (1—y)"y'dy
= B(1—t,1+t)=T(1—[(1+1).

If, in addition, t # 0, the m.g.f. can also be expressed as

My (t) = tD(E)T(1 — t) = t—

(1.68)

sin t’
where the second identity is called Euler’s reflection formula: Andrews, Askey and Roy (1999,
pp. 9-10) provide four different methods for proving Euler’s reflection formula; see also Jones

(2001, pp. 217-18), Havil (2003, p. 59), Schiff (1999, p. 174), and Duren, Invitation
to Classical Analysis, 2012, §9.5. Notice also, from (1.68) with t = 1/2, it follows that

[(1/2) = /7. n

Example 1.23 An interesting relation both theoretically and computationally is given by

~ (1 n—j I'n+1 P .
Z<j>p](1_p) :F(k‘)r((n—]{);_|_1)/0x (1—x)" " de, (1.69)

J=k

for0 < p<1andk =1,2,..., where (7]‘) is a binomial coefficient, and can be proven by
repeated integration by parts. To motivate this, take k = 1. From the binomial theorem (1.34)
with x = p =1—1y, it follows directly that the lhs of (1.69) is 1 — (1 —p)". The rhs is, with
Yy = 1__$7

n! P n—1 o n—1 n|l n
m/o(l—f) d$=—”/1 y"dy =y, =1-(1-p)".

For k =2, the lhs of (1.69) is easily seen to be 1 — (1 — p)" —np (1 — p)"~", while the rhs is,
usingy =1 —x,

1! (nn!— 2)! /opx (A=a)dz = —n(n- 1)/1 1 — gy

yn—l 1 yn 1
= n(n-1) -
n—1 1—p nl,
= 1—np(l—p)" ' =1 =p)",
after some rearranging. |
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Example 1.24 By substituting 2n — 1 for n; n for k; and taking p = 1/2 in (1.69), we get

2n—1 2n—1 1/2
2n —1 1 I'2 1
— i 2 I'2(n) J, 2
from (1.65), directly showing (1.30) in Ezample 1.7. |

(Binomial Theorem Extension): For n =0,1,2,..., and x,y,a € R, define

n—1
zll = H(:v + ja).

j=0
Then

(x+y) =3 (?)x%[n—ﬂ, (1.70)

i=0
as was first stated above in (1.45), without proof.

Proof: As
H(x+ja) = (@) (z+a) - (z+ka)

= () () (e = kﬂr(k;(gls/tb)x/a)’

(1.70) can be expressed as the conjecture

() 2 ( > i lni)
E(m+y+ja) - g(n> (H x+ja)(nljoly+]a>
s R0 ) (™)
> L(n+(x+y)/a) 2 ¢ (n)r(z'+x/a)1“(n—z'+y/a)
I'((z+y)/a) —~\i) TI'(z/a) I'(y/a)

LAt 2y () M T )

I'((z+y)/a) i I'(n+(@z+y)/a)
or, equivalently, using (1.64),

B(g,%)ii(?)lg(g—l—i,%—i—n—i). (1.72)

1=

We now need to prove (1.71) and (1.72). This will be done using results from probability
theory. In turn, this proves (1.70).
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Let X; b Gam (a;,¢), ¢ = 1,2, and define S = X; + X,, which follows a
Gam (a; + ag, ¢) distribution. The linearity of expectation, and the binomial theorem,
imply

k
k ) )
E[S*] = E[(X1+ X2)"] =) ()E (XTI E[X57],

- 2
=0

or, using that, for X ~ Gam(«, ), E [Xk} = ﬁ,fifa for k > —a,

F(k+a1+a2 i() 1+a1)1“(k;—i—l—a2)' (173)

kT (a1 + ag) cF=T (ag)

1=

That is, noting the c-terms cancel,

(k+a1+a;—1) G~ (i+ar— D! (k—i+ay— 1)
(al—l—ag—l)!k‘! _; 2'(a1—1)' (k‘ Z) ( 2—1)

k+a1+a2—1 Z+CL1—1 —i—l—a2—1
( )5 (" >( )
73

) gives (1.71), 1

or

=0
which is precisely (1.47). Rearranging (1.

r i() (i+a)T (k—i+ap)
a1+a2 [ (k+a; + as) '

=0

Using (1.64), this can be expressed as

k

Blana) =Y (’;)B(alﬂ,aﬁk—z’),

=0

which gives (1.72). The latter result can also be obtained, faster, by letting X ~
Beta (ay, az). In particular, and using the binomial theorem,

b= / fx (@ (aiaz) /01 (z+1—2) a7 (1 —a)  do

k
S
B(ar,a2) = \i/ Jo
k

1 k
= — <)B(a1+i,a2+k—i).
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2 Univariate Calculus

Leibniz never married; he had considered it at the age of fifty; but the person he
had in mind asked for time to reflect. This gave Leibniz time to reflect, too, and
so he never married. (Bernard Le Bovier Fontenelle)

2.1 Sequences and Limits

We begin with some basic definitions and results associated with sequences of real numbers.

Definition: A sequence is a function f : N — R, with f(n), n € N, being the nth term of
f. We often denote the sequence of f as {a,}, where a,, = f(n).

We will use the following notation. If {ax} is a sequence such that, for all & € N,
ar € A C R, then we say that {a;} is a sequence in A, or, in short, {a;} C A.

Definition: The sequence {ax} C R converges to a € R if:
Ve >0, 3K € N such that Vk > K, |a —al <e. (2.1)
Point a is the limit of {ax} if {ax} converges to a, in which case one writes limy_,o, ar = a.

If {a,} does not converge, then it is said to diverge.

Definition: Sequence {s,} is strictly increasing if s,+1 > sp, and increasing if s,11 > $y.
The sequence is bounded from above if 3¢ € R such that s,, < ¢ for all n. Similar definitions
apply to decreasing, strictly decreasing, and bounded from below.

. A convergent sequence has a unique limit.
Proof: Suppose a, — a as well as a,, — b. If b # a, let € := |a — b|. Since a,, — a,

there is n; € N such that |a, — a| < €/2 for all n > ny, and since a,, — b, there is ny € N
such that |a, — b| < ¢/2 for all n > ny. Let ng := max {ny,ns}. Then

€

€
|a—b|§|a—an0|+|an0—b|<§+2:]a—b|. (2.2)

This contradiction shows that b = a.
Every convergent sequence is bounded. (2.3)

Proof: Recall from the definition that a sequence is a function f : N — R, i.e.,
f(n) € R, as opposed to the extended real line, i.e., f(n) cannot be plus or minus infinity.
Let {a,} be a sequence that converges to the number a. Taking € = 1, it follows from
the definition of convergence that we can select an index N such that |a, —a| < 1 for
all indices n > N. Observe that we have a, = (a, —a) + a, so that by the Triangle
Inequality, |a,| = |(a, —a) +a| < |a, — a] + |a|]. Thus, by the choice of the index N,
la,| < 14 |a| for all indices n > N. Define M = max {1 + |al,|a1],...,|an_1]|}. Then
la,| < M for every index n. Thus, the sequence {a,} is bounded.

A simple but fundamental result is that, if {s,} is bounded from above and increasing,
or bounded from below and decreasing, then it is convergent:
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(The Monotone Convergence Theorem):
A monotone sequence converges if and only if it is bounded. (2.4)

Moreover, the bounded monotone sequence {a,} converges to
i. sup, ey {a,} if it is monotonically increasing, and to

ii. inf, ey {a,} if it is monotonically decreasing.

Proof: We have already proven that a convergent sequence is bounded, so it remains
to be shown that if the monotone sequence {a,} is bounded, then it converges to limits
determined by (i) and (ii). We first suppose that the sequence {a,} is monotonically
increasing. Then if we define S = {a, | n in N}, by assumption, the set S is bounded
above. According to the Completeness Axiom, S has a least upper bound. Define ¢ =
sup S. We claim that the sequence {a,} converges to ¢. Indeed, let ¢ > 0. We need to
find an index N such that

la, — €| < e for all indices n > N;

that is,
{—e<a, <{+e forall indicesn > N. (2.5)

Since the number ¢ is an upper bound for the set S, we have
a, <l <l+e forevery index n. (2.6)

On the other hand, since ¢ is the least upper bound for S, the number ¢ — € is not an
upper bound for S, so there is an index N such that ¢/ — € < ay. However, the sequence
{a,} is monotonically increasing, so

{—e<ay <a, forallindicesn > N. (2.7)

From the inequalities (2.6) and (2.7) follows the required inequality (2.5). Thus, the
sequence {a,} converges to £. We leave it to the reader to construct a similar proof when
the sequence is monotonically decreasing.

: Let {a,},{b.} C R be sequences such that {b,} is bounded and lima, = 0.
Then
lim a,b, = 0. (2.8)

Proof: As {b,} is bounded, IM € R, such that, Vn € N, |b,| < M. As {a,} is
convergent, IN € N such that, for any given ¢ > 0, |a,| < ¢/M. Then 0 < |a,b,| =
la,| x |by| < €.

(Squeeze Theorem): Suppose {a,}, {b.}, {c.} C R are sequences for which there
exists n, € N such that a,, < b, <¢, for alln € N, n > n,, and that lim a, = lim ¢, = L.

n—oo n—oo
Then

the sequence {b,} converges and lim b, = L. (2.9)
n—oo
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Proof: For any € > 0, dn, € N such that, Vn > n,,a, € N(L); and In. € N such
that, Vn > n., ¢, € N(L). Set N = max(n,,ng,n.), so that ¥n > N, {a,,c,} € N(L)
and a, < b, < c¢,. Then b, € N.(L) for n > N, which is the definition of convergence of
sequence {b,}.

: Let a € R. Then
Iim — = 0. (2.10)

Proof: Choose m € N such that |a| < m. Then for n > m,

lal* (yp L) _lal" (1 m™ (lal\"
m! H J m! \ mn—m m! \m

Jj=m+1

an

0<
n!

Since m is a constant and |a| < m, (Ja|/m)" — 0. The Squeeze Theorem (2.9) implies
that |a™/n!| — 0, and thus, from definition (2.1), a™/n! — 0.

: Let E be a nonempty subset of R. Assume F is bounded above and a := sup E.
Then there exists a sequence {a,} such that a,, € E for all n € N and a,, — a.

Suppose E is bounded above. Let a := sup E. Then for every n € N, there is a,, € F
such that a,, > a — (2). Also since a, < a for all n € N, by the Squeeze Theorem (2.9),
we see that a,, — a.

: Let x > 0. We wish to show

)

>z > 2"
O<ZO(2n!<ZOH’ (2.11)

where (not importantly right now) the latter expression is equal to e*, as will be shown later.

Proof: Inequality (2.11) is obvious for 0 < & < 1. Next, for each fixed z > 1, the ratio
of the two terms in the sums is (2" /n!)/(z**/(2n)!) = (2n)!/n! x 2=™. From the reciprocal
result of (2.10), the ratio of the two terms from (2.11) goes to infinity as n increases. As
the sums are infinite, the inequality must hold.

We will use result (2.11) in Example 2.95.

: Let {a,} be a convergent sequence with a,, — a € R. Then
la,| — |al. (2.12)

Proof: The reverse triangle inequality (1.21) implies 0 < ||a,| — |a|| < |a,, — a|. This
holds Vn € N, so, as a, — a, the Squeeze Theorem (2.9) implies |a,| — |al.

Observe how (2.12) holds for a,, = —1 and a = 1, but a,, /4 a, i.e., the converse of (2.12)
1s not true.
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: Let {a,},{b,} C R and let a,b € R such that a,, — a and b,, — b. Then
max {a,, b,} — max{a,b} and min{a,,b,} — min{a,b}. (2.13)
Proof: Let € > 0 be given. Then 3nq,no € N such that
Vn>ny, a—e<a,<a+e and VYn>ny, b—e<b, <b-+e.

Let ng = max {ny,ny}. Then Vn > ng, max{a—e, b—e} < max{a,,b,} < max{a+e,b+e}.
As max{a — €,b — €} = max{a,b} — € and max{a + €,b + ¢} = max{a, b} + ¢, it follows
that max {a,, b,} — max{a,b}. The proof for min is similar.

: Let z, and ¥, be sequences such that lim, ,o, =, = x and lim,, .. Yy, = y.
Then:
If z, <y, for all n sufficiently large, then = < y. (2.14)

Proof: |z, —x| < €, s0 —€ < x,—x < ¢, implying —z > —x, —e. Similarly, |y, —y| <,
or —e <y, —y < €, implying y > vy, — €. Adding the two inequalities gives

y—1>(yo—€) — (Tn+€) = (Y — 1) — 26 > —2¢.
As € is arbitrary, it follows that y —x > 0.

: Let {a,} be a convergent sequence with lima, = a, and suppose that a,, > 0
for all n € N. Then

a>0. (2.15)

Proof: This follows directly from (2.14). We can also argue as follows: Suppose to the
contrary that a < 0, and let ¢ = |a|/2. The interval (a — €,a + €) contains no a,, i.e., if
a, € (a —e,a+ ¢€) then a, < a+ ¢ < 0 which is a contradiction. Thus, a > 0.

The next definition and results are of utmost importance and we will use them through
the remainder of the text.

Definition: Sequence {s,} is termed a Cauchy sequence if, for a given € € Ryp, 3N € N
such that Vn,m > N, |s,, — s,| < €.

: Every convergent sequence is Cauchy.

Proof: Suppose that {a,} is a sequence that converges to the number a. Let € > 0.
We need to find an index N such that |a, — a,| < € if n > N and m > N. But since
{a,} converges to a, we can choose an index N such that |a; — a| < €/2 for every index
k > N. Thus, if n > N and m > N, setting a, — a,, = (a, — a) + (a — a,,), by the
Triangle Inequality,

€

€
lan, — am| = (@, — a) + (a — am)| < |a, — a| + |y —a| < 54—5 =€ (2.16)
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: Every Cauchy sequence is bounded.

Proof: Suppose that {a,} is a Cauchy sequence. For € = 1, we can choose an index
N such that |a, —a,,| < 1if n > N and m > N. In particular, we have |a, —ay| <
1 if n > N. But, setting a, = ay + (a, — ay), by the Triangle Inequality, |a,| =
lay + (a, —an)| < |lan| + |a, — an|. Consequently, we see that |a,| < |an|+1if n > N.
Define M = max {|ay|+ 1, |a1], |as], ..., |any—_1|}. Then |a,| < M for every index n.

(The Cauchy Convergence Criterion for Sequences):
A sequence {s,} converges <= {s,} is a Cauchy sequence. (2.17)

Half of the proof is given in (2.16), while the other half is given (after we develop the
required machinery) in (3.60).

We now turn to the limit of a function. Informally, the limit of a function at a particular
point, say z, is the value that f(z) approaches, but need not assume at z. For example,
lim, o (sinx) /x = 1, even though the ratio is not defined at x = 0. Formally, as instigated
in 1821 by Cauchy:

Definition (The é-e definition of right- and left-hand limits of functions): The function
f A CR — R has the right-hand limit L at ¢ € R, if Ve > 0, 30 > 0 such that
r€(c,e+d)NA = |f(z)—L| <e, (2.18)
for which we write L = lim, ,.+ f(z). Likewise, f has the left-hand limit L at ¢ € R, if
Ve > 0, 40 > 0 such that
r€(c=6,c)NA = |f(x)—L| <e, (2.19)
denoted L = lim, ,.- f(x). Observe in both (2.18) and (2.19), point ¢ is not necessarily a
member of domain A.

There are equivalent, and equally important, definitions of left- and right-hand limits of
functions. We state these first, and then prove their equivalence.

Definition (The sequential definition of right- and left-hand limits of functions): The
function f : A C R — R has the right-hand limit L at ¢ € R, if, for any monotone decreasing
sequence {t},cny C A and ¢, — c as defined in (2.1), then lim, o f (tx) = L (as in (2.1)).
Likewise, f has the left-hand limit L at ¢ € R, if, for any monotone increasing sequence
{ti}pen C A and &, — ¢, then limy_,o f (tx) = L.

: Let ¢ be a real number, and let f be a real-valued function whose domain
includes an open interval (¢, d) for some ¢,d € R with ¢ < d. The following two statements
are equivalent:

(a) For every ¢ > 0 there exists a ¢ with 0 < 0 < d such that |L — f(t)| < € whenever
¢ <t < 6. That is, from definition (2.18),

lim f(t) = L. (2.20)

t—ct

(b) If {t},cy is @ monotone decreasing sequence contained in (c, d) and t, — ¢, then
lim f(t) = L. (2.21)
k—o0

The reader should formulate the counterpart involving lim; .4 f(¢); and limy . f ()
for {t},cn @ monotone increasing sequence contained in (¢, d) and t, — d.
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Proof: (Heil, Measure Theory for Scientists and Engineers, 2025 (forthcoming), Exer-
cise # 1.9.30)

(a) = (b). Suppose that f(t) — L ast — c*, and let {#;},.y be any monotone
decreasing sequence contained in (¢, d) such that ¢, — ¢. Fix € > 0. Then there exists
0 < d < d—csuch that |f(t) — L| < € whenever ¢ < ¢t < §. Since t; — ¢, there exists
an N > 0 such that ¢ < t, < 6 for k > N. Hence |L — f (t;)| < € for all k > N, so
f(te) = L as k — oc.

(b) = (a). We use a contrapositive argument for this direction. Suppose that state-
ment (a) fails; that is, f(¢) does not converge to L as t — c¢. Then there exists an € > 0
such that:

(*) for every 0 < § < d there is a real number ¢ with ¢ < t < § such that |L— f(t)| > e.
Let

d—
0=c+ C.

Then, by hypothesis (), there must exist a real number ¢ < ¢; < 0 such that |L— f(t)| > e.

Next, consider
) d—c
0 =min< t;,¢c+ 1 )

By hypothesis (x), there must exist a real number ¢ < 5 < § such that |L — f(¢)] > e. In
particular, t5 < t;. Continuing in this way we obtain numbers t; > t5 > --- such that

2k 7

c<tp<cH

and therefore t;, — ¢, yet |L — f (t;)| > € for every k. Therefore statement (b) fails.

With both one-sided limits defined, we can now define the limit of a function, doing so
again in two ways, and then proving their equivalence.

Definition (The d-¢ definition of limit of a function): From (2.18) and (2.19) for right-hand
and left-hand limits, if lim, ,.- f(z) and lim, .+ f(z) exist and coincide, then L is the limit
of f at ¢, denoted L = lim,_,. f(z).

Definition (The sequential definition of limit of a function): For function f: A CR — R
and sequence {z,} C A such that x, — ¢, if sequence {f(z,)} converges as in (2.1), so that
L =lim,_, f(z,) exists, then L is the limit of f at c.

: The 6-¢ formulation, and the sequential limit formulation, of limit of a function,
are equivalent. That is, for ¢ € R; for function f : D C R — R, where D = I \ {c} for I an
open interval; and {u;} C D such that u, — ¢,

L=1limf(u) <= L= lim f(uyg). (2.22)
u—+c k—o00
Proof: (Heil, p. 32)
= Suppose that f(u) — L as u — ¢, and let (uy),y be any sequence contained in
I\{c} such that uy — c. Fix ¢ > 0. Then there exists a § > 0 such that (¢ —d,c+9) C [
and |f(u)—L| < e whenever 0 < |u—c| < 0. Since uj, — ¢, there exists an N € N such that
lup, — ¢| < 6 for k > N. Also, |ux — ¢| > 0 for every k by hypothesis, so |L — f (ug)| < ¢
for all £ > N. Therefore f (u;) — L as k — oo.
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< We use a contrapositive argument for this direction. Let N be large enough that
(c — %, c+ %) C I. Suppose that f(u) does not converge to L as u — ¢. Then there exists
an € > 0 such that for each integer £ > N there is a real number vy with 0 < |¢ — vi| < 1/k
such that |L — f (vy)| > €. Therefore {v;},~ v is a sequence of real numbers in I\ {c} such
that vy — ¢, but f (vx) 4 c as k — oo. By reindexing (that is, setting u, = vpn_1) We
obtain a sequence {uy},cy in I\{c} such that u; — ¢, but f (uz) /4 c as k — oo.

Of course, not all limits are finite. We write lim, ,.+ f(z) = oo if, VM € R, 36 > 0
such that f(z) > M for every x € (¢,c +6); and lim, .- f(z) = o0 if, VM € R, 3§ > 0
such that f(z) > M for every x € (¢ — ¢, ¢). Similar definitions hold for lim, ,.+ f(z) = —oc0
and lim, ,.- f(x) = —oo. As with a finite limit, if lim, ..+ f(z) = lim,_,. f(z) = £oo,
then we write lim, .. f(z) = £oo. Lastly, we write lim, ., f(z) = L if, for each € > 0,
Jxy such that |f(z) — L| < € for all z > xg, and lim, ,_, f(z) = L if, for each € > 0, Jx,
such that |f(z) — L| < € for all + < xy. As a shorthand, let f(oco) := lim, ,o f(z) and

f(=o0) :=lim,, o f(z). If f(oo) = f(—00), then we take f(+oo) := f(c0) = f(—00).

. Let f and g be functions whose domain contains the point ¢ and such that
lim, . f(z) = L and lim,_,. g(x) = M. Then, for constant values kq, ks € R,

lim{k f(2) + kog(a)] = kL + ke, (2.23)
lim f()g(x) = LM, (2.24)
il_}ﬂif(x)/g(x) =L/M,if M #0, (2.25)
if g(z) < f(z), then M < L. (2.26)

The proof of (2.23) is a simple application of the triangle inequality (1.20). For (2.25),
see, e.g., Stoll, Thm 3.2.1(c)). The proof of (2.26) follows from (2.14). For (2.24), the
core of the proof involves considering sequences, say {a,} and {b,}, that converge to a
and b respectively, and writing

0 < |anb, — ab| = |(anby, — anb) + (a,b — ab)| < |a,||b, — b| + |b] |an, — a] . (2.27)

By taking n large enough, and recalling (2.3), both of the terms on the rhs of (2.27) can
be made arbitrarily small. Now use the sequential limit definition just above (2.22) and
the Squeeze Theorem (2.9).

(Squeeze Theorem for Functions): As in Giv, Thm 3.34)% let f,g, and h be
functions defined on £ C R such that lim,_,, g(z) = lim,,, h(x) = L, where a is a limit
point of E. If for every x € E\{a} which is sufficiently close to a,

g9(z) < f(z) < h(x), (2.28)
then
glcl_rg f(z) = L. (2.29)

SHossein Giv, Mathematical Analysis and Its Inherent Nature, 2016.

37



We begin by noting that, when Giv writes (correctly, and as other authors also do,
such at Mattuck, but not in the most precise way) that “If for every x € E\{a} which is
sufficiently close to a,” this means:

b > 0 such that, Vo € (Bs,(a)\{a}) N E, g(x) < f(z) < h(z). (2.30)

e Proof I: By the equivalence of the € — ¢ and sequential limit criterion of function
limits, to prove (2.29), it is sufficient to show that, for {a,} any sequence in E\{a} that

converges to a,
lim f(a,) = L. (2.31)

n—o0

From (2.30) and that a,, — a, 3N € N such that, Vn > N, a,, € Bs,(a). Thus, ¥n > N,
g (a,) < f(an) < h(a,), and (2.31) follows from the Squeeze Theorem for sequences (2.9).

e Proof II (Ralf): Let € > 0. Then (as lim,,, g(x) = lim,_,, h(x) = L) 364,60, > 0
such that

Vo € E such that 0 < d(z,a) < d,, |g(z) — L| < ¢ and
Vo € E such that 0 < d(z,a) < 6y, |h(z) — L] <e.

Let 6 = min{dy, 05, dy}. Then
Vz € E such that 0 < d(z,a) <9, —e<g(x)—L < f(x)—L <h(z)—L <e,
which implies lim,_,, f(z) = L.

For the limit of a composition of functions, let b = lim,,, f(z) and L = lim,; g(y).
Then

lim g(f(z)) = L. (2.32)

r—a

Example 2.1 Compute

. (e = 1)(sint?)
M 2

Using (2.24), we can separately compute limy,_,o(e" — 1)/h and lim,_,o(sint?)/t. For the
former, use of ’Hépital’s rule (2.75) yields the limit to be 1. Alternatively, from power series
expansion of the exponential function (2.272) applied to the numerator, limy_,(e" — 1)/h =
limy (1 + h/2 + --+), yielding 1. For the latter, with x = t* > 0, lim;_o(sint?)/t =
lim, o sin(z)/v/@ = lim,_ [ sin(z)/z] x [2/y/Z] = lim,_o(sin(z)/2) xlim, ¢ /2 = 1x0 =0,
having used (2.87). The desired limit is thus 1 x 0. |

Definition: A deleted (or punctured) neighborhood of £ is an interval (a,b) with the point
&, a < & < b, removed.
(Monotonicity of limits of functions): Let A C R and f,g: A — R such that
lim f(z) =b and limg(z) = c.
€A €A

1. (Laczkovich and Sés, Thm 10.30) If b < ¢, then there exists a punctured neighborhood
U of «, denoted U(«), such that

Ve e U(a)NA, f(z) < g(x). (2.33)
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Proof: Let € := (¢ —0)/2. Then EIUl(a) such that, for x € Aﬂ_Ul(a), |f(z) —b] <&
and 3Us(«) such that, for v € ANUs(a), |g(z) —¢| < e. Let U(a) = Uy () N Us(cv).
Then

. -b b —b
reANU(a) = f(x)<b+€:b+CT: ;C:c—c =c—e<g(x).

Note that the converse is not true: If f(z) < g(z) holds on a punctured neighborhood
of a, then we cannot conclude that lim,_,, f(x) < lim,_, g(x). If, for example,
f(z) = 0 and g(x) = |z|, then f(x) < g(x) for all x # 0, but lim, o f(z) =
lim, 0 g(z) = 0.

2. (Laczkovich and Sés, Thm 10.31) Now assume f(z) < g(x) holds for all z € ANTU(a).
Then b < c.

Proof: Let U(w) be such that, Vo € AN U(a)., f(z) < g(x). Suppose that b > c.
Then by part (1), 3V («) such that, Vo € ANV («a), f(z) > g(z). This, however, is
impossible, because the set AN U(a) NV (a) is nonempty, and

vz e (AN U(a) N V(a)), f(z) < g(x).

The converse is not true: If lim,_,, f(z) < lim,_, g(x), then we cannot conclude
that f(z) < g(x) holds in a punctured neighborhood of «v. If, for example, f(z) = |z|
and g(z) = 0, then lim, o f(z) <lim,0g(z) =0, but f(z) > g(x) for all x # 0.

The next result comes from, e.g., Stoll, Thm 4.1.8, and p. 143, exercise #12. The reference
to a metric space can be ignored for now, and the reader can just take X = R. Later, have
a look at §3.2.

Suppose E is a subset of a metric space X, p is a limit point of F, and
f, g are real-valued functions on E. Let g be bounded on E, and lim,_,, f(z) = 0. Then

lim,, f(z)g(xz) = 0.

Proof: We can either use the sequential criterion or the definition of the limit of a
function. Function g is bounded on £ = 3M > 0 such that Vz € E, |g(z)| < M; while
lim,,, f(z) = 0 = Ve > 0, 3§ > 0 such that, Vz € E, 0 < d(z,p) < 0 = |f(z)| < e.
Then,

Ve e E, 0<d(z,p) <d=|f(z)9(x)| = |[(2)[|g(x)| < Me.

Thus, lim,_,, f(x)g(x) = 0.

The next result (from, e.g., Stoll, 2021, p. 144, exercise #15) is such that its proof (at
least the one we give) invokes the Bolzano-Weierstrass Theorem, which we prove in (3.58).
This latter theorem simply says: Every bounded sequence in R has a convergent subsequence.
Thus, we also need to invoke subsequences, whose use we otherwise delay until §3.5. We give
the definition also now, but the reader may skip this and return to it later.

Definition: Consider a sequence {a,}. Let {ns} be a sequence of natural numbers that is
strictly increasing; that is, ny < ng < n3 < ---. Then the sequence {b} defined by by = ay,,,
for every index k, is called a subsequence of the sequence {a,}.
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: Let E be a subset of a metric space, and let p a limit point of E. Suppose f
is a bounded real-valued function on E having the property that lim,_,, f(z) does not exist.
Then there exist distinct sequences {p,} and {¢,} in E with p, — p and ¢, — p such that
lim,, o f (pn) and lim,,_, f (¢,) exist, but are not equal.

We begin with two illustrations, and then provide a proof.

1. Take a bounded function on an interval with a jump discontinuity for some p € (a,b),
but is otherwise continuous. Let sequence {p,} approach p from the left, and let
sequence {¢,} approach p from the right.

2. Let E be any nonempty interval of R, and let f : £ — R be the Dirichlet function,

namely f(z) = xo(z). Let {p,} € Q with p, — p; and {¢,} € R\ Q with ¢, — p.
Then lim,, .o f (p) = lim, oo 1 = 1, while lim,, ,, f (¢,) = lim,,_,,, 0 = 0.

Proof: Recall the equivalence between the sequential criterion of the limit of a function
and the formulation in terms of distances using e-0:

e Let (X, d) be a metric space, F be a subset of X and f a real-valued function
with domain F. Suppose that p is a limit point of E. The function f has a
limit at p if there exists a number L € R such that given any € > 0, there exists
a ¢ > 0 for which |f(z) — L| < e for all points x € F satisfying 0 < d(z,p) < 4.
If this is the case, we write

lim f(x)=L or f(x)—>L as z—p.

T—p

e Let F be a subset of a metric space X, p a limit point of F, and f a
real-valued function defined on E. Then

lim f(x) = L if and only if  lim f(p,) =L
T—p n—00

for every sequence {p,} in E, with p, # p for all n, and lim,,_,.. p, = p.

Since f : E — R does not have a limit at the limit point p € E, by the negation of
the above, either:

1. for any sequence {p,} in E converging to p with p, # p Vn € N, lim,_, f(pn)
exists but there exist different sequences {g,},{r,} in E converging to p (again
with ¢, # p and r, # p Vn € N), for which lim,, ., f(g,) # lim, . f(rn);

2. there exists at least one sequence {p,} in E converging to p with p, # p Vn € N,
for which lim,,_,. f(p,) fails to exist.

In the first case, we can take the two sequences {¢,}, {r,} and arrive at the conclusion
of the theorem.

In the second case, we use the boundedness of f and the Bolzano-Weierstrass Theorem
to produce two such sequences. As f and therefore {f(p,)} is bounded, there exists a
subsequence {p,, } of {p,} such that {f(p,,)} converges to some a € R. Since {f(p,)}
does not converge to a, 3¢ > 0 such that for any given m € N, 3 > m with | f(p;) — a| >
€. For each m € N, choose such an index [. This way, we construct a subsequence
{m} such that {f(p;)} never enters N.(a). By the above corollary, as {f(p;)} is still
bounded, there exists a subsequence {p;, } of {p;} such that {f(p;, )} converges to some
point b € R. Clearly a # b so that {p;, }, {pn,} are two sequences in E converging to p
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: Let f: R — Rsatisfy f(z +y) = f(x) + f(y) for all z,y € R. If lim,_,o f(x)
exists. Then

1. lim, o f(z) =0, and

2. lim,,, f(x) exists for every p € R.

Proof: For (1),

lin (o) = i (5 + 5) = b (5) + b/ (5) =2l 7).

which implies lim,_, f(z) = 0.

For (2), let p € R, and note that f(p + z) = f(p) + f(x). Take the limit as x — 0,
which gives (via part (1))
lim f(z) = lim f(p+ ) = lim f(p) + lim f(z) = f(p) + lim f(z).

T—p

The rhs exists, so the lhs exists. As p € R was arbitrary, the lhs exists for every p € R.

Recall definitions (2.18) and (2.19) for right and left limits of functions. We repeat these
formulations here, introducing a bit more notation, and then consider discontinuities, and
monotone functions.

Definition (d-€ definition of right- and left-hand limits of functions (again)): Let £ C R
and let f be a real-valued function defined on E. Suppose p is a limit point of £ N (p,c0).
The function f has a right limit at p if there exists a number L € R such that given any
e > 0, there exists a 6 > 0 for which

|f(z) — L| < e for all z € F satisfying p <z < p+ 4.

The right limit of f, if it exists, is denoted by f(p+), and we write

fpt) = lim [(z) = %ﬁ% f(@).
Similarly, if p is a limit point of E'N (—o0,p), the left limit of f at p, if it exists, is denoted
by f(p—), and we write

f(p—=) = lim f(x) = lim f(x).

sy T T

In the next section, continuity of a function f : D — R at point p € D means f(p+) =
f(p—) = f(p). In the next definition, it suffices for the definition of the interior of a set to
be just for intervals of the real line, given by Int(I) = (a,b) for I = [a,b], or I = (a,b], or
I ={a,b), for a < b.

Definition: Let f be a real valued function defined on an interval I. The function f has
a jump discontinuity at p € Int(I) if f(p+) and f(p—) both exist, but f is not continuous
at p. If p € [ is a left (right) endpoint of I, then f has a jump discontinuity at p if f(p+)
(f(p—)) exists, but f is not continuous at p.
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Definition: Jump discontinuities are also referred to as simple discontinuities, or discon-
tinuities of the first kind. All other discontinuities are said to be of second kind.
If f(p+) and f(p—) both exist, but f is not continuous at p, then either (a) f(p+) #

f(p—), or (b) f(p+) = f(p—) # f(p). In case (a), f has a jump discontinuity at p. In case
(b), the discontinuity is removable. All discontinuities for which f(p+) or f(p—) does not

exist are discontinuities of the second kind.

: Let I C R be an open interval and let f : [ — R be monotone increasing on 1.
Then f(p+) and f(p—) exists for every p € I and

sup f(z) = f(p—) < f(p) < fp+) = ;ggf(x)- (2.34)

r<p

Furthermore,
if p<gq,p,q €1, then f(p+) < f(g—). (2.35)

Proof: Fix p € I. Since f is increasing on I, {f(x) : * < p,x € I} is bounded
above by f(p). (Since I is open and p in [, this set is nonempty. So, along with being
bounded, its sup exists.) Let A = sup{f(z) : 2 < p,x € I}. Then A < f(p). We now
show that lim,_,,- f(z) = A. Let € > 0 be given. Since A is the least upper bound of
{f(z) : < p}, there exists z, < p such that A —e < f(x,) < A. Thus, if z, < x < p,
then A —e < f(x,) < f(x) < A. Therefore, |f(x) — A| <, for all z,z, < x < p. Thus,
by definition, lim, ,,- f(z) = A. Similarly

f(p) < flp+) =inf{f(x) :p<a zel}

Finally, suppose p < ¢. Then

flp+)=inf{f(z) :x>p,zel} <inf{f(z):p<z<q}
<sup{f(z):p <z <q} <sup{f(z):2x<qurel}=/[f(g-)

Notice that, for a given set S, inf(S) < sup(S), so the trick for the previous equation is
to determine the set S = {f(x):p <z < q}.

: If f is monotone on an open interval I, then the set of discontinuities of f is
at most countable.

Proof: (Based on Stoll, 2021, Coro 4.4.8, with added detail.)

(Step 1): Let £ = {p € I : f is discontinuous at p}. Suppose f is monotone increasing
on /. Then
pe E ifandonly if f(p—) < f(p+).

Indeed, a function f is continuous at p € (a,b) if and only if (a) f(p+) and f(p—) both
exist; and (b) f(p+) = f(p—) = f(p). Thus, the statement follows from the contraposi-
tive.

(Step 2): For each p € E, choose 1, € Q such that

flp—) <rp < fpt).

Indeed, this choice can be made because Q is dense in R. See §3.1.

(Step 3): If p < q, then f(p+) < f(g—). This is (2.35).
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(Step 4): Therefore, if p,q € E, we have 1, # r,; and thus the function p — r, is a
one-to-one map of F into Q.

Indeed recall: f: X — Y is one-to-one if: Vay, 29 € X, 21 # 29 = f(21) # f(29).
(Step 5): Therefore, E is equivalent to a subset of Q and thus is at most countable.

To understand this, we need to know: Two sets A and B are said to be equivalent
(or to have the same cardinality), denoted A ~ B, if there exists a one-to-one function of
A onto B. Here, function p — r, is a one-to-one map of £ into Q. Then, as indicated
in part 3 of the subsequent lemma, F is equivalent to a subset of @ and thus is at most
countable.

The last part of the above proof is part of a bigger set of results, which we state here, with-
out proof. A proof can be found in, e.g., Heil, Measure Theory for Scientists and Engineers,
2025 (forthcoming), p. 13.

: Let X and Y be sets.
1. If X is countable and Y C X, then Y is countable.
2. If X is uncountable and Y D X, then Y is uncountable.
3. If X is countable and there exists a one-to-one function f : Y — X, then Y is countable.

4. If X is uncountable and there exists a one-to-one function f : X — Y, then Y is
uncountable.

5. If Y is uncountable and there exists an onto function f : X — Y, then X is uncountable.
We take up continuity in the next section. We end this section with a result that holds

without assuming continuity, and which parallels (2.46) in the next section, in which we
assume continuity. It was taken from an exercise from Stoll, 2021, p. 143, #9.

: Suppose f : (a,b) = R, p € [a,b], and lim,_,, f(z) > 0. Then, 3§ > 0 such
that, Vo € (a,b) with 0 < |z — p| < 6, f(z) > 0. (Notice continuity is not assumed.)

Proof: Let L = lim,_,, f(z) > 0. Take ¢ = L/2. From the definition of limit, 36 > 0
such that, Vo € Bs(p) N ((a,b) \ {p}),

L2 < f(z)<3L/2 & —L/2< f(z)—L<L/2 < 0<|f(z)—-L|<L/2=c.
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2.2 Function Continuity and Uniform Continuity
Definition: Let f be a function with domain A C R and a € A. (Note that, without

specification of the codomain, it is understood to be R, which is sometimes also stated as
saying “let f be a real-valued function”.) If lim, ,,+ f(z) = f(a), then f is said to be
continuous on the right at a; and if lim, .- f (z) = f (a), then f is continuous on the left at
a. We have continuity at point a when both of these conditions hold:

f is continuous at « if lim f (z) = f (a). (2.36)

r—a

The function f : A — R is said to be continuous provided that it is continuous at every point
in A.

Recall (the equivalence of) (2.20) and (2.21); and also recall (2.22). These imply that an
equivalent definition of continuity is as follows.

Definition: A function f : A — R is said to be continuous at the point x in A provided
that, whenever {x,} is a sequence in A that converges to xg, the image sequence {f (z,)}
converges to f (xg).

Definition: If f is continuous at each point a € S C A C R, then f is continuous on S,
in which case we also say that f is of class C° on S, or f € C°(S). Often, subset S will be an
interval, say (a,b) or [a,b], in which case we write f € C°(a,b) and f € C°[a, b], respectively.
If f is continuous on (its whole domain) A, then we say f is continuous, or that f is of class

CY or f e’

From the above definitions, we can express the limit result for continuous functions as

follows. If f: ACR — R and f € C°(S) for S C A, then

Vaes, limf(x)=f (um m) = f(a). (2.37)

r—ra

Given two functions f: D — R and g : D — R, we define the sum f+¢g: D — R and
the product fg : D — R by (f + g)(x) = f(z) + g(z) and (fg)(z) = f(z)g(z), Vo € D.
Moreover, if g(z) # 0 for all  in D, the quotient f/g: D — R is defined by

(f/9)(x) = J@) for all z in D.

g9()

The following theorem is an analog, and also a consequence, of the sum, product, and
quotient properties of convergent sequences.

: Suppose that the functions f : D — R and g : D — R are continuous at the
point xp in D. Then the sum

f+g9:D — R is continuous at z; (2.38)

the product
fg: D — R is continuous at x; (2.39)

and, if g(z) # 0 for all = in D, the quotient

f/g: D — R is continuous at x. (2.40)
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Proof: Let {z,} be a sequence in D that converges to zy. From definition (2.37), and
the sequential limit definition (2.22), lim, ., f (z,) = f (x0) and lim, . g (z,,) = g (x0).
Now observe that (2.23) implies

lim [f (z,) + g (2n)] = f (20) + g (20) ;

n—oo

(2.24) implies
lim [f (2,) g (za)] = f (20) g (x0) ;

n—o0

and, if g(z) # 0 for all z in D, (2.25) implies

Results (2.38), (2.39), and (2.40) follow.

Definition: For a nonnegative integer & and numbers cq, ¢1, .. ., ¢x, the function p : R — R,

defined by
k

p(z) = Z ciz' for all z in R
i=0
is called a polynomial. If ¢ # 0, then p is said to have degree k.

(Polynomial functions are continuous): Let f : A — R be an nth order poly-
nomial, n € N. Then f is continuous on A.

Proof: First let f : I — R be given by f(z) = k, for some k € R and I an open
interval. Then, for a € A, (2.36) implies lim,,, f (z) = lim,,,k = k = f(a), ie,
constant functions are continuous. Now let f : I — R be given by f(z) = x, so that
lim, . f () = lim,,x = a = f(a), so that f(z) = x is continuous. It follows from
(2.38) and (2.39) that polynomials are continuous.

Example 2.2 Let {a,} C R be a convergent sequence with lima, = a. We wish to prove
that lima? = a®. The result follows from continuity of polynomials, which in this case is
f:R —[0,00); f(z) = 22. Now consider using (2.36). We need show that, for any e > 0,
IN € N such that, forn > N, |a? — a?| < e¢. Note a®> — a*> = (a, + a)(a, — a). As {a,}
is convergent, it is bounded, so AM € Ry such that, Vn € N, |a,| < M. Further, for any
€1 > 0, AN € N such that, for n > N, |a, — a| < 1. The (regular) triangle inequality then

implies that, forn > N,
lan, — a®| < |an +a| x |an —a| < (laa| + |a]) X |an = a| < (M + |a])er.
Taking €, = €¢/(M + |a|) shows |aZ — a?| < e. |

: Let I be an interval and let f : I — R be a function that is strictly monotonic
on I. Then
f~': f(I) — R is continuous. (2.41)
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Proof: (Ghorpade and Limaye, p. 75) Since f is strictly monotonic on I, we see that f
is one-one and its inverse f~!: f(I) — R is well-defined. Consider d € f(I). Then there
is a unique ¢ € I such that f(c) = d.

Assume first that f is strictly increasing on I. Let € > 0 be given. Suppose that c is
neither the left endpoint nor the right endpoint of the interval I. Then there are ¢y, co €
such that

c—e<c<c<c<c+e (2.42)

Let dy := f(c1) and dy := f (c2). Since f is strictly increasing on I, we see that d; < d <
do, and since f! is also strictly increasing on f(I), we obtain

yefl), di<y<ds = a=[f"(d)<f "y <[ (d)=co

From this, (2.42), and that f(c) =d, f~*(d) = ¢, f71(d) —e < f~1(y) < f~4(d) +¢. Thus
if we let § := min {d — dy,dy — d}, we see that 6 > 0 and

yef)ly—dl<s=|f"(y) - (D] <e

Hence f~! is continuous at d. See Ghorpade and Limaye for the case of the left and right
endpoints; and the case when f is strictly decreasing.

: Let f :]0,00) — R be given by f(z) = 2", for n € N. As f is strictly
monotonically increasing,

f71:]0,00) = R, with f~(y) = y"/™ is continuous. (2.43)

Example 2.3 Let {a,} € Rs¢ be a convergent sequence with lima,, = a. We wish to prove
that lim \/a, = v/a. The result follows because f : [0,00) — [0,00); f(z) = /2 is continuous.
Consider now using the sequence convergence formulation of continuity. We need show that,
for any e > 0, AN € N such that, forn > N, |\/a, —/a| < €. From (2.14), a > 0. Choose
any € > 0. Ifa =0, choose N such that a,, < € for allm > N. Ifa > 0, choose N such that
la, — a|] < ey/a for alln > N. For such n,

la, — al la,, — al
Va, —\al = < < €. [
| val Van, ++va T 4a

Definition: For z > 0 and rational number r = m/n, where m and n are integers with n

positive, we define 2" = (2™)"/"

. For 2 > 0 and integers m and n with n positive, (z™)"/" = (zt/m)™.
See, e.g., Fitzpatrick, p. 79 for proof.

: For r a rational number, define f(z) = 2", for > 0. The function f : [0, 00) —
R is continuous.
Proof: Let m,n be integers such that n > 0 and 7 = m/n. Define g(z) = 2™ and
h(x) = 2™, for + > 0. Then f(z) = g(h(z)) = (g o h)(x) for x > 0. Being a polynomial,
h:[0,00) — R is continuous. By (2.41), g : [0, 00) — R is continuous. From (subsequent)
(2.48), f : [0,00) — R is continuous.
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: Let f:(0,00) — R be given by f(z) = 2", for r € Q. Then f is strictly
monotone and continuous, and

f71:(0,00) = R, with f71(y) = y'/" is continuous. (2.44)

: Let D C R, and let f,g: D — R be functions continuous at ¢ € D. Then

(i)

| f] is continuous at c. (2.45)
(ii) max{ f, g} and min{f, g} are continuous at c.

Proof:
(i) Let {z,} be a sequence in D such that x,, — ¢. From the continuity of f and the
sequential limit definition (2.22), f(z,) — f(c). Result (2.12) implies | f(z,)| — |f(c)|.

(ii) Let {z,} be a sequence in D such that z,, — ¢. We have f(z,) — f(c) and
g (xn) = g(c), so by (2.13),
ma {f (22) 9 (2)} = max{f(0), (c)} and min {f (2) 9 ()} - min{f(c), g(c)}.

Alternatively, use the fact that we can write

max{f(z),g(x)} = %(f(ﬂi) +g(@) + [f(x) = g(@))),
along with (2.12) and (2.38).

: Let f: D — R be a continuous function on (nonempty) interval D = (a,b) € R.
Let ¢ € (a,b) such that f(c) > 0. Then

30 > 0 such that f(x) >0 for z € (¢ — J,c+9). (2.46)
Likewise, if f(c) < 0, then there is 6 > 0 such that f(z) < 0 whenever z € D and |z —¢| < .

Proof I (sequential argument): Suppose to the contrary that no such ¢ exists. Then, for
every 0 > 0, there exists z € (c—0, c+9) such that f(z) < 0. If we take 6 = 1/n, we obtain
a sequence x, in (¢ — 1/n,c+ 1/n) with f(z,) < 0. The inequality |z, — ¢| < 1/n shows
that the sequence x, converges to ¢, and the continuity of f implies that the sequence
f(z,) converges to f(c). From (2.14) and that f(z,) <0, f(c) < 0. This contradicts the
assumption that f(c) > 0.

Proof II (e-d argument): Let € := f(c) > 0. By continuity, 30 > 0 such that
f(x) = f(¢)] < f(¢), Vz € (a,b) with d(z,c) <.
~~

That is, Vz € (a,b) with d(z,c) < J, we have 0 = f(c) — f(c) < f(x).

Proof III (using existing results): Function f is continuous on (a,b) and thus at
¢ € (a,b). Since c is a limit point of (a, b), lim,_,. f(z) = f(c) > 0. The result now follows
from (2.33). More specifically, let g(z) = 0, and lim,_,. f(z) = f(c) > 0 = lim,,. g(z).
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We wish to devise an example to show that the converse of the previous theorem is not
true. Hint: This means you need to demonstrate a continuous function f such that

Vee{r:0<|z—c| <6}, f(z)>0, f(c)<O.
An example is: Take f(z) =22 ¢=0.
: Let f: D — R be a continuous function at a point ¢ in (a,b) C D. Prove:

If f(z) >0 on (a,c) U (c,b) then f(c) > 0. (2.47)

Proof: Let {a,} be a sequence in (a,b) converging to ¢, and a,, # ¢. Then f (a,) > 0,
and the result (2.15) implies that lim f (a,) > 0. Since f is continuous at ¢, this means
that f(c) > 0.

An important result is the continuity of composite functions: Let f : A - Band g: B —
C' be continuous. Then go f : A — C is continuous. More precisely, if f is continuous at
a € A, and g is continuous at b = f (a) € B, then

lim g (f (z)) = g (nm f (:c)) . (2.48)

T—ra T—ra

We defined continuity of function f: A C R — R at point a € A in (2.36) as being when
lim, . f(x) = f(a). As proven below, here is an equivalent definition.

Definition: Let f be a function with domain A C R. Function f is continuous at a € A
if, given € > 0, 46 > 0 such that

re€Aand |z —a|<d = |f(x)—f(a)] <e (2.49)

Its value is seen when contrasting it with a definition of uniform continuity:

Definition: Let f be a function with domain A. Function f is uniformly continuous on A
if the condition holds: For a given € > 0, 30 > 0 such that

rye Aand [z —y| <d = |f(x) — f(y)] <e (2.50)

Note crucially that, with uniform continuity, § does not depend on the choice of = € [a, b].

As perhaps expected, there is a comparable, equivalent definition of uniform continuity
in terms of limits of sequences.

Definition: Let D C R and let f : D — R be a function. We say that f is uniformly
continuous on D if, for any sequences {z,}, {y,} C D,

Tp—Yn = 0= f(xn) — f (yn) = 0. (2.51)

The equivalences of the two forms of definitions, for both continuity, and uniform continu-
ity, are proved in most all beginning books on real analysis. The proofs are instructive, and we
give them here, as presented in (the magnificent) Ghorpade and Limaye (2018, Propositions
3.8 and 3.22), along with some examples and further results.

 Let D CR, ce D, and let f: D — R be a function. Then f is continuous
at ¢ as in definition (2.36) if and only if condition (2.49) holds, i.e., f satisfies the following
e — 0 condition: Ve > 0, 30 > 0 such that

re€Dand |z —cl<d = |f(x)— flo)| <e. (2.52)

48



Proof: Let f be continuous at c¢. Suppose the € — § condition does not hold. This
means that there is € > 0 such that for every ¢ > 0, there is x € D satisfying

|z —c| <6, but |[f(z)— f(c)]>e

Then there is a sequence (z,,) in D such that |z, —c| < 1/n, but | f (z,) — f(c) |> € for
all n € N. But then z,, — c and f (x,) - f(c). This contradicts the continuity of f at c.

Conversely, assume the € — ¢ condition. Let (z,) be any sequence in D such that
x, — c¢. Let € > 0 be given. Then there is 6 > 0 such that

re€Dand |r—cl <= |f(x)— flc)| <e

Since z,, — ¢, there is ng € N such that |z, — ¢| < 0 for all n > ng. Hence |f (x,) — f(c)| <
e for all n > ny. Thus f (x,) — f(c). This shows that f is continuous at c.

: Let D C R and let f: D — R be a function. Then f is uniformly continuous
on D, as in definition (2.51), if and only if f satisfies (2.50), i.e., for every € > 0, there is
0 > 0 such that

r,y€ Dand |z —y| <d = |f(x) — f(y)] <e (2.53)

Proof: Let f be uniformly continuous on D. Suppose there is € > 0 such that for every
9 > 0, there are x and y in D such that |z — y| < d, but |f(z) — f(y)| > e. Considering
:= 1/n for n € N, we obtain sequences (z,) and (y,) in D such that |z, — y,| < 1/n
but |f (z,) — f (yn)| > € for all n € N. Then z, —y, — 0, but f(x,) — f (y,) - 0. This
contradicts the assumption that f is uniformly continuous on D.

Conversely, assume that the uniform € — § condition holds. Let (x,) and (y,) be any
sequences in D such that z,, —y, — 0. Let € > 0 be given. Then there is § > 0 such
that |f(x) — f(y)| < €, whenever z,y € D and |z — y| < §. Since z,, — y,, — 0, we can
find ny € N such that |z, — y,| < 0 for all n > ny. But then |f (z,) — f (yn)| < € for all
n > ng. Thus f (z,) — f (y,) — 0. Hence f is uniformly continuous on D.

: Show that uniformly continuous functions defined on the same domain form a
vector space. That means, if f,¢g: D — R are uniformly continuous functions, then cf + dg
is uniformly continuous, where ¢, d € R.

Proof: We show additivity and scalar multiplication (homogeneity) separately:

Additivity: Given € > 0 there are §; > 0 and d > 0 such that for any x,y € D,
if |z —y| < d1, then |f(z) — f(y)] < €¢/2 and if |z — y| < b9, then |g(z) — g(y)| < €/2.
Therefore, if |z — y| < min{dy, d}, then, from the triangle inequality,

I(f+9)(x) = (f+9)W)| < |f(@) = fy)] +|9(x) —g(y)| <€e/2+€/2=¢

Homogeneity: By uniform continuity of f, we have that, given € > 0, there is a 6 > 0
such that, for any =,y € D, if |z — y| < 6, then |f(x) — f(y)| < €/|c|, for ¢ € R\ {0}.
Therefore, if |z —y| < 6,

lef () —cf(y)l < lellf(z) = F)l < lcle/le] = e
Combining the two statements gives the result.
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: Suppose that the functions f : D — R and g : D — R are uniformly continuous
and bounded. The product fg: D — R is also uniformly continuous.

Proof: Because f and g are bounded, M, > 0 such that, Vu € D, |f(u)| < My; and
M, > 0 such that Yu € D, |g(u)| < My. Set M := max{M, M,}. Because f and g are
uniformly continuous on D, given € > 0, 36 > 0 such that, if u,v € D and |u — v| < 9,

then
€

Fw) = f0)] < 5

and |g(u) = g(v)| < 577 (2.54)

2M°
Write
fw)g(u) = f(v)g(v) = f(w)g(u) — g(v)] + g(v)[f(u) — f(v)].

Taking the absolute value and applying the triangle inequality, we have, for |u — v| < d,

[f(w)]g(w) = g(v)] + g(v)[f (w) = F)]] < [f(w)lg(w) = g(0)]] + [g(v)[f(u) = f(v)]
< [f(Wllg(w) = g(@)[ + [g()|f (u) = f(v)|
< Mlg(u) = g(v)| + M| f(u) = f(v)]

€ €
M- S
< Moy tMoy e

where we used the fact that f and g are bounded by M; and applying (2.54).

The next result is very important in analysis. Its proof invokes the use of subsequences
and the Bolzano Weierstrass Theorem (3.58), the discussion of which we postpone until §3.5.
Thus, the following proof can be skipped for now. Recall that, if f is a continuous function
on its domain D, we write f € C(D).

: Let D C R. Every uniformly continuous function on D is continuous on D.
Moreover, if D is a closed and bounded set, and f € C°(D), then

f is uniformly continuous on D. (2.55)

Proof: (Ghorpade and Limaye, Prop. 3.20) Let f : D — R be given. First assume
that f is uniformly continuous on D. If ¢ € D and (x,) is any sequence in D such that
T, — ¢, then let y, := ¢ for all n € N. Since z, — y, — 0, we obtain f (z,) — f(c) =
f(xn) — f(yn) — 0O, that is, f(x,) — f(c). Thus f is continuous at c¢. Since this holds
for every c € D, f is continuous on D.

Now assume that D is a closed and bounded set and f is continuous on D. Suppose
f is not uniformly continuous on D. Then there are sequences (x,) and (y,) in D such
that x, — y, — 0, but f (z,) — f (yn) - 0. Consequently, there exist ¢ > 0 and positive
integers ny < mg < --- such that |f (z,,) — f (yn,)| > € for all £ € N. Since D is a
bounded set, the sequence {z,, } is bounded. By the Bolzano-Weierstrass Theorem, it
has a convergent subsequence, say {a:nkj }. Let us denote the sequences {mnk]} and {ynkj}

by (Z;) and (g;) for simplicity. Let Z; — ¢. Then ¢ € D, since D is a closed set. Because
— Yy, — 0, we see that Z; — ¢; — 0 and hence y; — c as well. Since f is continuous at
¢, we obtain f (Z;) = f(c) and f (g;) — f(c). Thus

f (&) = (@) = fle) = f(c) =0.

But this is a contradiction, since |f(Z;) — f(g;)| > € for all j € N. Hence f is
uniformly continuous on D.
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Another proof of (2.55), using the notion of topological compactness, is given later, in
(3.78). The notions of uniform continuity and uniform convergence (the latter discussed in
§2.6 below) play a major role in analysis. One example, of many, and which we will use, is in
the construction of the Riemann integral in §2.5.1. We also require (2.55) for proving (6.24).

Example 2.4 We wish to demonstrate that if a function f : R — R is bounded and contin-
uwous, it is not necessarily uniformly continuous. We will require the Mean Value Theorem
(MVT) (2.94), which states: If f : [a,b] — R is continuous on [a,b] and differentiable on
(a,b), then 3c € (a,b) such that f(b) — f(a) = f'(c)(b— a).

To show the claim, we use f(x) = sin(x?). Let x,y € R. The MVT implies
3k € (z,y) U (y,z) such that [sin (z*) — sin (y*)] = 2|k| |cos (K*)| |z — y]. (2.56)
Let € > 0. From (2.53), we need to show, Vz,y € R,
30 > 0 such that |z — y| = dx(z,y) <0 = dy(f(x), f(y)) = ’sin (z*) — sin (yQ){ < e.

Observe from (2.56) that, as x,y — oo, k is not bounded, i.e., not less than |x — y|. Thus
A6 > 0 that satisfies (2.53). [

Definition: A function f : D — R is said to be Lipschitz, provided

3C € R.q such that Vu,v € D, |f(u) — f(v)| < Clu —v|. (2.57)

: A Lipschitz function is uniformly continuous.
Proof: Suppose that f is Lipschitz. From (2.57), there is a number K > 0 such that
lf(x) — fly)| < K|lx—y|, forallxyekF.
Fix e >0, and let § = ¢/K. If 2,y € F satisty |z — y| < §, then
[f(z) = fy) < Klox —y| < Kd =e.

The result follows from (2.53).

Example 2.5 The function f(x) = x? is not uniformly continuous on R. Let ¢ = 2 and
choose an arbitrary § > 0. Let ns be a natural number such that 1/ns < §. Further, let
s =ns + 1/ns and ys = ns. Then |xs — ys| = 1/ns < 0 while

fxs) = f(ys) = (ns + 1/ns)° —ni =24 1/n > ¢.

We conclude that f is not uniformly continuous.
The function f(z) = x* is Lipschitz (and hence uniformly continuous) on any bounded
interval [a,b]. For any x,y € [a,b] we obtain

22 — | =z +y)(x—y)| =z +yllz —y|
< (|z| + ly)|z — y| < 2max(lal, |b])|z —y|. W
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Example 2.6 Let f: D =R, f(z) =z, with D =[0,1].
1. Prove that f is continuous.
2. Prove that f is uniformly continuous.
3. Prove that f is not Lipschitz.

4. Determine whether or not f : [1,+00) = R, f(z) = v/z, is uniformly continuous. Hint:

il = IV — YRRV
Ve~ Vil = Ve = Vil Y

Solutions:

1 Ifp >0, |f(x) = f(p)l = Wa — bl =l = pl/ (Vo + /p) < Flo—pl. Lete>0 be
given. Set § = min{p, /pe}. Then |xv—p| < § implies that |f(x) — f(p)| < €. Therefore
f is continuous at p. Note that |xt —p| <0 & p—39 <x <p+d, and x is restricted to
D =[0,1]. This is why ¢ is taken to be § = min{p, \/pe}.

Ifp=0,1f(z) = f(p)l = Wz = /bl = |z = pl/ (V& + \/P). Set § = €.

2. From (2.55), a continuous function with domain a closed, bound interval is uniformly
continuous.

3. One argument using the derivative is: Function f is Lipschitz if |f(x)— f(y)| < Clz—yl,
which implies | %{/(y) | < C,. The left-hand side term is a difference quotient (or a
growth of rate) of a function, or graphically the slope of the line joining (x, f(z)) and
(y, f(y)). Thus f is Lipschitz if all the secant lines are of bounded slope.

A second argument not invoking derivatives is to consider sequence x,, = 1/n forn € N.

Observe
V1/n—+/0 _ 1V /.
1/n—0 1/n
This ratio can be made arbitrarily large as n — oo. Therefore, the square-root function
fails to be Lipschitz.

4. The function is uniformly continuous on [1,+00). Let € > 0, and take 6 = e. If
|z —y| <0, then

ViV Jr—yl ey

|\/§_\/§|:|\/E_\/§’\/E+\/y_\/5+\/g— 2

<|lr—y|<d=e |

We now gather some fundamental results, with proofs available in most all real analysis
textbooks. Let I = [a, b] be a closed, bounded interval. Let f be a continuous function on I,

Le., f € C%a,b]. Then:
e The image of f € C%(I), I = [a, ], forms a closed, bounded subset of R, i.e.,

Ve € I, 3m, M € R such that m < f (z) < M. (2.58)
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e (Eztreme Value Theorem) Function f assumes minimum and maximum values on I,
ie.,’
€.,

fec),I=[ab = Ixg,z1€lst.Voecl, f(rg) <f(x)<f(zy). (2.59)

The proof is most easily conducted using the concept of compactness, and so we relegate
the proof to the end of §3.5.

e (Intermediate Value Theorem) Let f : D C R — R, I = [a,b] C D, f € C°(I), and
a= f(a) and B = f(b).

Vy: a<y<fB, Jcé€ (a,b) such that f(c) =. (2.60)

e As stated in (2.55) and proved there,

fec’I), I=][a,b)] = f is uniformly continuous on I. (2.61)

These four facts together constitute what Pugh (2002, p. 39) argues could rightfully be
called the Fundamental Theorem of Continuous Functions.

We conclude with the definition of a null sequence, and a basic, useful result.

Definition: A null sequence is any real-valued sequence {h,}>°, that converges to 0 as
n — oo. That is, for any € > 0, Ing = ng(€) such that |h,| < € for n > ny. Examples of
positive such sequences include hy = 1/k and hy = 1/2F.

(Garling, Prop 3.2.8.) Let {€,}22, be a null sequence of positive numbers.
Sequence {a,}>, converges to ¢ iff

Yk, Iny, such that |a, — ¢| < € for n > ny. (2.62)

Proof:

Necessary (<): As {€,}22, is a null sequence of positive numbers, for any given e,
Jk € Nsuch that 0 < € < e. The condition then implies that, for n > ng, |a,—¢| < ex < e,
this being the definition of sequence convergence.

Sufficient (=): Assume sequence {a,}°, converge to ¢. Let ¢; > 0 be given. Then,
as ¢ is the limit point of {a,}, In; € N such that |a, — €| < €1,¥n > ny. Similarly, given
€s such that 0 < €5 < €1, Ing € N, ny > ny, such that |a, — ¢| < €3,Vn > ny. Continuing,
we obtain, as required, a strictly increasing sequence {n;} € N and strictly decreasing
sequence {e;} € Ry such that, for each k € N, |a,, — (| < €, Vn > ny.

"According to Petrovic, Advanced Calculus: Theory and Practice, 2nd ed., 2020, p. 99, this is known
as “The Maximum Theorem”, “The Extreme Value Theorem”, and Weierstrass called it “The Principal
Theorem” in his lectures in 1861. The result was originally proved by Bolzano, but his proof was not
published until 1930. The first publication was by Cantor in 1870.
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2.3 Differentiation
2.3.1 Definitions and Techniques

Let f € C°(I), where I is an interval of nonzero length. If the Newton quotient

o F ) — f (@)

h—0 h

(2.63)

exists for x € I, then f is differentiable at x, the limit is the derivative of f at z, and
is denoted f’(x) or df /dx. Similar to the notation for continuity, if f is differentiable at
each point in I, then f is differentiable on I, and if f is differentiable on its domain, then
f is differentiable. If f is differentiable and f’(z) is a continuous function of z, then f is
continuously differentiable, and is of class C!.

Observe that, for h small,

flx+h) - f(z)

F (@) ~ . or flx+h)~f(0)+hf (2), (2.64)
which, for constant z, is a linear function in h. By letting h = y—=, (2.63) can be equivalently
written as
i L W) = /(@) (2.65)
yor Y —T

which is sometimes more convenient to work with.

(Fundamental lemma of differentiation) This lemma makes the notion more pre-
cise that a differentiable function can be approximated at each point in (the interior of) its
domain by a linear function whose slope is the derivative at that point. As in Protter and
Morrey (1991, p. 85), let f be differentiable at the point x. Then there exists a function 7
defined on an interval about zero such that

fl@+h) = f) = [f'(z) +n(h)] - h. (2.66)

and 7 is continuous at zero, with 1(0) = 0. The proof follows by solving (2.66) for n(h) and
defining n(0) =0, i.e.,

[f(z+h)— f(2)] - flx), h#0, 1(0) == 0.

S

n(h) =
As f is differentiable at x, limj,_,on(h) = 0, so that n is continuous at zero.

Example 2.7 From the definition of limit, limj,_,0 0/h = 0, so that the derivative of f(z) =k

for some constant k is zero. For f(x) = x, it is easy to see from (2.63) that f' (z) = 1. For
f(x) = a?,

h)? — a2
Dty = lim (22 + h) = 2.
h—0 h h—0

Now consider f (z) = z"™ for n € N. The binomial theorem implies

flx4+h)=(z+n)" = Z <n>x”zhl = 2" +nha" .+ R

- 2
=0

so that

fig O @) gt et = e, (2.67)

h—0 h h—0
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Now let f(x) =2~ for n € N. From (1.10), for any = # 0 and y # 0,

yn—l + yn—2x + . + xn—l
mnyn

9

F) - f@) =y —a = TV () [—

xnyn
so that (2.65) implies
fy) = [ (x)

lim — iim y Tyl x”_l] I R
yor Y= y—e xnyn x?n

Thus, for f(x) = x™ withn € Z, ' (z) = nz"L. |

Assume for functions f and g defined on I that f’(x) and ¢’ (x) exist on I. Then
(sum rule)  (f+g) (z) = f'(z) + ¢ (2), (2.68
(product rule)  (fg) () = f ()¢ () + g (2) ' (=) (2.69
(quotient rule)  (f/g)' () = L8 (T; (;)J];(x) 9@ ) £o. (2.70)
(chain rule)  (gof) (z) =g (f(2)) [ (z). (2.71)

The chain rule is proven in all beginning real analysis books. It is simple to prove using
the fundamental lemma of differentiation (2.66); see, e.g., Protter and Morrey (1991, p. 85),
or Ghorpade and Limaye (2018, Proposition 4.10).

Remark 1: Simply, but usefully, from (2.68); and (2.69) with f(z) = —1,
(f=9) () = f(2) =g (2). (2.72)

Remark 2: The set of differential functions forms a vector space. That means, if f and g
are differentiable functions on their domain D, and a,b € R, then functions (af) : D — R,
with (af)(z) :== af(z), and (f+g) : D — R, with (f+g¢)(x) := f(x)+g(x), are differentiable;
these properties being called homogeneity and linearity, respectively.

Remark 3: With y = f(z) and z = g(y), the usual mnemonic for the chain rule is
d: _dzdy
de  dydx’
Example 2.8 Result (2.67) for n € N could also be established by using an induction ar-

gument: Let f(z) = 2" and assume f'(x) = nz""'. It holds for n = 1; induction and the
product rule imply for f(x) = 2™ = 2™ - x that f' (z) =2" - 1+z-nz" ' =n+1)z". W

If f is differentiable at a, then f is continuous at a. (2.73)

Proof: This is seen by taking limits of
fx) = f(a)

Tr —a

flx) = (z —a)+ f(a),
which, using (2.23) and (2.24), gives
lin £ () = ' (a)- 0+ f (a) = f (a),

Tr—a

and recalling the definition of continuity, e.g., (2.37).
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The function f (x) = |z| at © = 0 is the showcase example that continuity does not imply
differentiability.

. Differentiability of f does not imply that f’ is continuous.

Proof: We just need a counterexample. A popular one takes f (z) = x?sin (1/z) for

x # 0 and f(0) =0. Then

f'(z) = 2z sin (%) — oS (%) , T #0,

and lim,_,o f’ (z) does not exist. But, from the Newton quotient at = = 0,

i L0 1) = £ (0
h—0 h

= ’llli%hsm(l/h) =0,

so that f'(0) = 0. Thus, f’ () is not continuous.

What is true is that uniform differentiability implies uniform continuity of the derivative,
as discussed next. I took this from Estep (2002, §32.4), and it is also stated as an exercise in
Stoll (2021, p. 205, # 16).

Definition: A function f is said to be uniformly differentiable on an interval [a,b] if,
Ve > 0, 940 > 0 such that

fy)—f()

- — f'(x)] <€, Vax,y€la,b] with |z —y| <.

: If f is uniformly differentiable on [a, b], then f’(x) is uniformly continuous on

[a, b].

Proof: If f is uniformly differentiable, then for x,y € [a,b] and € > 0, we can find a
0 > 0 such that, for |z —y| < 4,

fy)—f(z)

') = f @) = |f(y)- e . f' ()
< f’(y)—f@;:i(x) +’f(y;:£(x)—f’(:z:) < 2.

Thus, f’(z) is uniformly continuous on [a, b].

Example 2.9 Function f(x) = 22 is uniformly differentiable on any bounded interval |a, b].
The function f(x) = 1/z is differentiable on (0,1), but is not uniformly differentiable on
(0,1). |

(Fermat): Let f be defined on an interval [a, b] and suppose that it attains its
greatest or its smallest value at a point ¢ € (a, b).

If f is differentiable at ¢, then f'(c) = 0. (2.74)
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Proof: We will assume that f attains its greatest value at ¢ € (a,b), i.e., that f(x) <
f(c) for all x € [a,b]. If © < ¢ then

f(z) — [(c)

r—cC

>0

— )

and (2.47) implies that f’(¢) > 0. On the other hand, if > ¢ then

f(z) — f(c)

r—cC

<0

- )

so f'(¢) < 0. Combining the two, f'(¢) > 0 and f'(c) < 0, we obtain that f'(c) = 0.

Of great use is I’Hépital’s rule® for evaluating indeterminate forms or ratios:
('Hopital’s rule, 0/0 case): Let f and g, and their first derivatives, be continuous
functions on (a,b). If lim, .+ f (z) = lim, ,,+ g (x) = 0 and lim, ,,+ ' (z) /¢’ () = L, then

lim f (z) /g(x) = L. (2.75)

Most students remember this very handy result, but few can intuitively justify it. Most
real analysis textbooks give the rigorous proof, and also discuss and prove the oo/co case.
We give a “heuristic justification” that is easy to remember.

Assume f and g are continuous at a, so that f (a) = g (a) = 0. Using (2.64) gives
LS fash) @b @) [ )

~ j—

oat g (@) ho0g(ath)  hooga)+hy(a)  g(a) aot g (2)

Another, related, quick way of seeing this part of the rule is the following. As in Stoll
(p- 212, Exercise #2), suppose f, g are differentiable on (a,b), x¢ € (a,b), and ¢’ (xg) # 0.

If f(z9) =g (x9) =0, then
f(@) _ f'(2o)

lim = )
z=wo g(x) g (7o)

This follows because, for x # x, write

f(fb’)—o_f(x)—f(l’o) T — Zo _f(x)—f(:co)/g(x)—g(xo)’

gx) =0  w—z¢ gl®)—g(m) = -0 T — X

and take the limit, z — z.

A different “rough proof” of I'Hopital’s rule is given by Pugh (2002, p. 143).

A similar result, also referred to as I’'Hopital’s rule, holds for x — b~, and for x — oc;
and also for the case when lim, ,,+ f () = lim, .+ g (z) = occ.

Example 2.10 (Petrovic, Advanced Calculus: Theory and Practice, 2nd ed., 2020, Example
4.6.4) Determine

. 1
lim x7-=.
rz—1

8Named after Guillaume Frangois Antoine Marquis de 'Hopital (1661-1704), who was taught calculus by
Johann Bernoulli (for a high price), and wrote the first calculus textbook (1696) based on Bernoulli’s notes,
in which the result appeared. Not surprisingly, I’'Hopital’s rule was also known to Bernoulli (confirmed in
Basel, 1922, with the discovery of certain written documents).
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Inz

This limit is of the form (1°°), so we cannot apply I’Hopital’s rule directly. Since v = e
when x > 0, and since © — 1 means that we can assume that x > 0, we have

1 1 Inz
rT-7 = exp (lnx17w> = exp :
l1—2z

When x — 1, the exponent Inz/(1 — x) is of the form (%), so we can apply I’Hopital’s rule.
Further, (1 —z) = —=1%#0 so

and we obtain that lim,_,; 277 = e~ 1. [

Definition: Let f be a strictly increasing continuous function on a closed interval I.
Function f on I is said to be invertible, or is a bijection (injective and surjective; see page
6). The inverse function g = f~! is defined as the function such that (go f)(xz) = z and
(fog)(y) =y. It is also continuous and strictly increasing.

For f a strictly increasing continuous function on a closed interval I, (2.58) and the IVT
(2.60) imply that the image of f is also a closed interval. (See (3.75) for a more general
result, namely, only continuity is required.) If f is also differentiable in the interior of I with
f'(z) > 0, then a fundamental result is that

,()_ 1 B 1
TV =5 @) " P

We prove a simpler version of this. It assumes existence of the derivative of f~1.

(2.76)

: Let X,V C R, and let f : X — Y be an invertible function, with inverse
f~' 1Y — X. Suppose that o € X and y, € Y are limit points of X,Y, respectively,
such that yo = f (zg). This implies zg = f~!(yo). If f is differentiable at zy, and f~! is
differentiable at yg, then

1
—1\/ .
(f ) (%0) [ (20)

Proof: (Tao, Analysis I, 4th ed., 2022, p. 226) First note that, if f is the identity
function, i.e., f(x) =z for all € X, then f is differentiable at xy and f’(x¢) = 1. From
the chain rule (2.71),

— / _ /
(f o f) (x0) = (F71) (w0) ' (o).

But f~'o f is the identity function on X, and hence (f~'o f)" (xq) = 1.
(Tao then gives the more general proof, which relaxes the requirement on f~! from dif-
ferentiability to continuity.)

A useful application involving the arcsin and arctan functions is given below in Example
2.13.

We close this section with two definitions that are of occasional use. We will use them
below in proving (2.150).
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Definition: (As in Stoll, Def 5.1.2) Let I C R be an interval and let f be a real-valued
function with domain I. If p € I is such that I N (p,00) # 0, then the right derivative of f
at p, denoted f’ (p), is defined as

7L(p) = Tim flp+h) - f(p)

2.
h—0t h ’ ( 77)

provided the limit exists. Similarly, if p € I satisfies (—oo, p) NI # (@, then the left derivative
of f at p, denoted f’ (p), is given by

£ (p) = lim fp+h) - fp)

2.
h—0— h ’ ( 78)

provided the limit exists.
NOTE: if I = [a,b], the right derivative applies to p € [a,b), but not for p = b, because
IN(b,00) = 0. Similar for left derivative.

Example 2.11 A uniformly continuous function on [0, 1] that is differentiable on (0,1) need
not have f' bounded on (0,1). For example, take f(x) = \/x, and note the limit from the
right at zero of [, i.e., f'(0+). [

: Suppose f is differentiable on an interval I. Then f’ is bounded on I if and
only if there exists a constant M such that |f(z) — f(y)| < M|x —y| for all z,y € I.
Proof:

(=) Take any x,y € I. If z = y, then 0 < 0 holds vacuously. Assume, w.l.o.g.,
x < y. Suppose that f’ is bounded on I, i.e., IM > 0 such that, Ve € I,|f'(c)] < M.
Since f is differentiable on I, f is continuous on [x,y] and differentiable on (x,y). Thus,
the MVT applies to f (but not necessarily f’, which was not assumed continuous), so
that Jzo € (x,y) such that f(y) — f(x) = f'(xo)(y — ). As |f'(zo)| < M and y — z > 0,

—M(y —x) < fy) = f(2) = f'(xo)(y — 2) < M(y — x).

That is, |f(y) — f(z)| < M(y —2) = My — .

(<) Suppose Vx,y € I, |f(y) — f(z)| < M|y — x|, where M > 0. Fix an arbitrary
x € I. Then

fly) — f(z)
Yy—x

<M, o ~M< f(z)=lim /W@

- y—r Y — T

< M.

Vyel, y#u, '

The limit exists because f is differentiable on I. That is, Vo € I, |f'(z)] < M, i.e., f"is
bounded on I.

There is also the following related result.

: Suppose that f has a bounded derivative on (a,b). Then f is uniformly con-
tinuous on (a,b).
See Petrovic, exercise #4.4.27.
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2.3.2 Trigonometric Functions

We turn now to some fundamental results on limits and derivatives for trigonometric func-
tions. Recall the unit circle geometric representation of sine and cosine, and, from Pythago-
ras, the fundamental relation cos?(z) + sin(z) = 1. Of great use are the following relations:

(Angle sum and difference identities): For x,y € R,

sin (x +y) = sinx cosy + cosxsiny, (2.79a)
cos (x +y) = cosx cosy — sinz sin y. (2.79b)

These can be demonstrated from a clever graphic, such as in Stillwell, Numbers and Geometry,
1998, §5.3, though I prefer the nice derivation from Kuttler, Calculus of One and Many
Variables, p. 59), included here.

p(z +y)
(1,0)

Figure 1: From Kuttler. Unit circle with two inscribed, equal triangles
: Let z,y € R. Then
cos(x + y) cos(z) + sin(z + y) sin(x) = cos(y). (2.80)

Proof: Recall that, for a real number z, there is a unique point p(z) on the unit circle
and the coordinates of this point are cosz and sin z. Now it seems geometrically clear
from Figure 1 that the length of the arc between p(x + y) and p(x) has the same length
as the arc between p(y) and p(0).

Also from geometric reasoning the distance between the points p(x +y) and p(z) must
be the same as the distance from p(y) to p(0). In fact, the two triangles have the same
angles and the same sides. Writing this in terms of the definition of the trig functions
and the distance formula,

(cos(z +y) — cosz)? + (sin(z + y) — sinz)? = (cosy — 1)* + (siny — 0)°.
Expanding, we get

cos?(z +y) + cos®> v — 2 cos(z + y) cos x + sin®*(z + y) + sin® x — 2sin(z + y) sinw
=cos?y — 2cosy + 1 + sin’y.

Now using that cos? +sin® = 1,
2 — 2cos(z + y) cos(x) — 2sin(z + y) sin(x) = 2 — 2 cos(y),

which gives (2.80).
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Continuing from Kuttler’s presentation, we now prove (2.79).

Proof: The length of the unit circle is defined as 27. Thus, for example, sin (g) =1,
cos (Z) = 0. Letting x = 7/2, (2.80) implies (seen also from the unit circle)

sin(y + 7/2) = cosy. (2.81)

Now let u = z + y and v = x. Then (2.80) implies cosucosv + sinusinv = cos(u — v).
Also, from this and the basic relations

cos (—z) = cos () and sin (—x) = —sin (x), (2.82)

we obtain
cos(u + v) = cos(u — (—v)) = cosu cos(—v) + sinu sin(—wv)

= COS U COSV — sSinu sin v.

Thus, letting v = 7/2 (and also graphically clear from the unit circle),
cos (u+mw/2) = —sinu. (2.83)

Then, from (2.81) and (2.83),

. ™
sin(z 4+ y) = — cos <x+§+y>

s . T .
= — [COS (:1: + 5) COS Yy — SIn (:L‘ + 5) smy]

= sinx cosy + siny cos x, and

sin(x — y) = sinz cosy — cos x sin y.
Using (2.79b), cos(2z) = cos(x + x) = cos(x) cos(x) — sin(z) sin(z) = cos?(z) — sin’(z).
From this, we easily obtain two of the useful double-angle formulae,
cos 2z = cos’x — sin®z = (1 — sin® ) — sin’ 2 = 1 — 2sin® ; (2.84)

and
cos 2z = cos® x — sin®x = cos’x — (1 — cos? x) = —1 + 2cos” z. (2.85)

Let f (z) = sin (x). Using (2.79a), the derivative of f is

dsin (z) . sin(x+h)—sin(z) . sinz cosh—sinz . cosz sinh

= lim = lim + m ————
dx h—0 h h—0 h h—0 h
L . cos(h)—1 . sin(h)
= sin(2) Illlir(l] — —— tcos () llgr(l]
= cos(z), (2.86)
where (B B 1
Loom tim S0 g gm =L (2.87)

h—0 h h—0 h
Both limits in (2.87) need to be justified. If we assume that L is not infinite, then the second
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limit in (2.87) is easy to prove: Write

cos(h)—1  h(cos(h)+1) cos(h)—1  h(cos*h—1)
h ~ h(cos(h)+1) h ~ h2(cos (h)+1)

B sinh\?  h
B h cos (h) +1

using cos? (z) + sin? (x) = 1, so that, from (2.24) and because we assumed that L, € R,

. cos(h)—1 _ sinh\? h
flbli% h __flg%( h > flg%cos(h)—i—l_o'

1
1

Using (2.86), along with (2.81) and (2.83), i.e., cos(x) = sin(z + 7/2) and sin (z) =
—cos (x + w/2), the chain rule gives

dcosx  dsin(x +7/2)
dr dx

=cos(x 4+ m/2) = —sin(x).

Students remember that derivative of sine and cosine involve, respectively, cosine and sine,
but some forget the signs. To recall them, just think of the unit circle at angle § = 0 and the
geometric definition of sine and cosine. A slight increase in 6 increases the vertical coordinate
(sine) and decreases the horizontal one (cosine).
The easiest way of proving the former limit in (2.87) is using (2.86); it follows trivially
by using the derivative of sinz, i.e.,
sin(h) . sinh—sin0 dsinx

W7 sy h dr |, cost

The limits in (2.87) also follow by applying I’'Hopital’s rule: For the latter,

iy €08 (h) —1 _ —sin (h)
h—0 h 1

= —sin (0) = 0.

The circular logic between (2.86) and (2.87) is obviously not acceptable.” The properties of
the sine and cosine functions can be correctly, elegantly and easily derived from an algebraic
point of view by starting with functions s and ¢ such that

s=c¢ d=-s 50)=0 and ¢(0)=1 (2.88)

(see e.g., Lang, 1997, §4.3). As definitions one takes
S2k+1

cos(z Z and sin(z Z Qk CEk (2.89)

k=0 k=0

which converge for all z € R; see Example 2.85 below for details. From (2.89), the properties
of the trigonometric functions can be inferred, such as cos?(x) + sin?(z) = 1, (2.79), (2.81),
(2.82), and (2.83). See e.g., Browder (1996, §3.6) or Hijab (1997, §3.5) for details.

90f course, from a geometric point of view, it is essentially obvious that limy_,oh~!sin (k) = 1. Let 0 be
the angle in the first quadrant of the unit circle, measured in radians. Recall that 6 then represents the length
of the arc on the unit circle, of which the total length is 2. Then it seems apparent that, as 6 decreases, the
arc length coincides with sin(6).
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From (2.82) and (2.79a),

sin(z —y) +sin(zx+y) = sinzcosy —cosxsiny + sinzcosy + cosxsiny

= 2sinxcosy.

Now let b=x 4y and ¢ =y — z, so that z = (b —¢) /2 and y = (b+ ¢) /2. It follows that
sin (b) — sin (¢) = 2sin (b ; c> Ccos (b—;—c) : (2.90)

which is one of the sum-to-product identities.
Finally, let f (z) = tan (x) :=sin (x) / cos (z) so that

f/ (I) _ COS (.CL‘) COS (l')(jo—sjl(f;)(l') (_ sin (37)) — 14+ %((i)) -1+ tan2 ({L‘) (291>

from the quotient rule.

Example 2.12 To find the derivative of y = arcsinx, note that siny = x, so that y can be
considered an acute angle in a right triangle with a sine ratio of x/1; see Figure 2.

a
Figure 2: x =siny and cosy = a

Differentiating siny = x with respect to x and using the chain rule and (2.86) gives

dy ] dy 1
cosy - — = or — = )
Y e ’ dr  cosy
Note from Figure 2 that cosy = a. From Pythagoras, a®> + x* = 1% or a = \/1 — 22, so that
d 1
(arcsin z)

dx V-2
Example 2.13 Let f (z) = sin (z) for —n/2 < x < w/2, with derivative f'(x) = cosx from
(2.86). From (2.76) and relation cos® (z)+sin? (z) = 1, the inverse function g (y) = arcsin (y)
has derivative

I )= = 1 - ——
cos (arcsin (y)) /1 — sin (arcsm (y))  V1—y?
which agrees with Example 2.12. Similarly, let f(xz) = tan(x), for —7/2 < x < 7/2 with
inverse function g (y) = arctan (y), so that, from (2.91),
1 1
! = = . 2.92
g W) 1 + tan? (arctan (y)) 1+ y? (292)
Now let z be a constant. Using (2.92) and the chain rule gives
d 1
—arctan(z — 1) = ————, 2.93
dz ( ) 1+ (2 — ) (2.93)
which we will use below in Example 2.58. ]
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2.3.3 Mean Value Theorem and Function Extreme Points

(Mean Value Theorem, MVT): Let f be a continuous function on its domain [a, b],
b > a, and differentiable on (a,b). Then 3¢ € (a,b) such that f (b) — f (a) = f' (&) (b— a).
The MVT is perhaps more easily remembered as

f—a’;:g @ _ o). b—azo. (2.94)

The proof is given below, after we prove Rolle’s theorem. Many common and important
calculus results (see the list below) hinge on this result, or a generalization of it, and we will
also see it used extensively in the multivariate setting. The MVT becomes intuitive from
Figure 3, for a differentiable (and, thus, continuous) function, and such that f is continuous
(from the right, and the left, respectively) also at endpoints a and b, as stated in the theorem.

f(b)r

f(a)r

Figure 3: The mean value theorem of the differential calculus

Still, without a proof, a convincing argument and clever graphic are not adequate. Pugh
(Real Mathematical Analysis, 2nd ed., 2015, p. 4) says it quite well, and is the only analysis
book I have ever seen that discusses this in such detail. Here is an excerpt:

When is a mathematical statement accepted as true? Generally, mathematicians would
answer “Only when it has a proof inside a familiar mathematical framework.” A picture may
be vital in getting you to believe a statement. An analogy with something you know to be true
may help you understand it. An authoritative teacher may force you to parrot it. A formal
proof, however, is the ultimate and only reason to accept a mathematical statement as true.

There has been a tendency in recent years to take the notion of proof down from its pedestal.
Critics point out that standards of rigor change from century to century. New gray areas appear
all the time. Is a proof by computer an acceptable proof? Is a proof that is spread over many
journals and thousands of pages, that is too long for any one person to master, a proof? And of
course, venerable FEuclid is full of flaws, some filled in by Hilbert, others possibly still lurking.

Clearly it is worth examining closely and critically the most basic notion of mathematics,
that of proof. On the other hand, it is important to bear in mind that all distinctions and
niceties about what precisely constitutes a proof are mere quibbles compared to the enormous
gap between any generally accepted version of a proof and the notion of a convincing argument.
Compare Euclid, with all his flaws to the most eminent of the ancient exponents of the convincing
argument — Aristotle. Much of Aristotle’s reasoning was brilliant, and he certainly convinced
most thoughtful people for over a thousand years. In some cases his analyses were exactly right,
but in others, such as heavy objects falling faster than light ones, they turned out to be totally
wrong. In contrast, there is not to my knowledge a single theorem stated in Euclid’s Elements
that in the course of two thousand years turned out to be false. That is quite an astonishing
record, and an extraordinary validation of proof over convincing argument.
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(Rolle): Suppose that f is a function defined and continuous on an interval
[a, b], that it is differentiable in (a,b), and that f(a) = f(b). Then

Je € (a,b) such that f'(c) = 0. (2.95)
The equivalent contrapositive will be used below:
Ac € (a,b) such that f'(c) =0 = f(a)# f(b). (2.96)

Proof: We start with the EVT (2.59), which guarantees that f attains its largest
value M and its smallest value m on [a,b]. There are two possibilities: either M = m or
M > m. In the former case, the inequality m < f(x) < M implies that f is constant on
[a,b], so f'(x) =0 for all z € (a,b) and we can take for ¢ any point in (a,b). If M > m,
the assumption that f(a) = f(b) shows that at least one of M and m is attained at a
point ¢ € (a,b). By Fermat’s Theorem (2.74), f'(¢) = 0.

Proof of the MVT:

The function

- b—ua
satisfies F'(a) = F(b). Since linear functions are differentiable (and, hence, continuous), F’
a

satisfies all the hypotheses of Rolle’s Theorem (2.95). It follows that there exists ¢ € (a, b)
such that F’(c) = 0. Clearly,

F/([E) _ f/( ) . f(b[)):i(a)
0=F'(c) = f'(c) — W

Example 2.14 As in Pons, Thm 5.4.5, let f and g be functions, differentiable on (0, 00)
and continuous on [0,00). Prove: If f'(x) < ¢'(z) for every x € (0,00) and f(0) = g(0),
then f(z) < g(x) for every x € [0, 00).

Proof: Let h =g — f, so W(x) = ¢'(x) — f'(x) > 0 for all x € (0,00). Fix xo € (0,00)
and apply the MV'T to h € (0,x), showing 3c € (0,x¢) such that

h (o) — h(0)
o — 0 .

B (c) =

The quotient and the denominator are nonnegative; thus it must be the case that h(xg) —
h(0) > 0. Substituting for f and g,

0 < h(zo) = h(0) = g (x0) — f (x0) — (9(0) — f(0)) = g (o) — f (o),
implying [ (xo) < g (o). u
We now collect some further useful results.
o IfVx eI, f'(x) =0, then the MVT (2.94) implies that, Vz,y € I, f (y) = f (x), i.e.,

f is constant on I. (2.97)
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e Let I be the open interval (a,b). If f is differentiable on I and, Vo € I, |f' (z)| < M,
then the MVT implies that |f (y) — f ()] < M |y — z| for all x,y € I. This is referred
to as the (global) Lipschitz condition.

e The MVT is mainly used for proving other results, including the fundamental theorem
of calculus (see §2.5.2), the validity of interchanging derivative and integral (§6.3), and
the fundamental optimization results, proven below, in (2.105) and (2.106).

e If (i) f'(¢) > 0 for some point ¢ € I, and (ii) f’ is continuous at ¢, then, from (2.46),
360 > 0 such that, Vo € (¢ — d,¢+0), f'(x) > 0, i.e., f is increasing on that interval.
See (2.100) below for proof. Condition (ii) cannot be dropped: See, e.g., Stoll, 2021,
the remark on p. 199.

e The MVT can be generalized to the Cauchy or Ratio Mean Value Theorem, as stated
and proved below. It is used, for example, to rigorously prove I'Hépital’s rule (2.75).
Given the prominence of the MVT, Stoll (2001, p. 204) argues that it could justifiably
called the Fundamental Theorem of Differential Calculus.

(Cauchy Mean Value Theorem): If f and g are continuous functions on [a, b]
and differentiable on I = (a,b), then 3¢ € I such that [f(b) — f(a)]¢g'(c) = [9(b) — g(a)]f'(c)

or, easier to remember, if g(b) — g(a) # 0,

J0) - fla) (0
o0 —gla)  gle) (2.98)

Notice that this reduces to the usual mean value theorem when g(z) = .

Proof: Let h(z) = [f(b) — f(a)]g(z) — [g(b) — g(a)] f(x). Then, from (2.38) and (2.39),
h is continuous on [a, b]; and, from (2.68) and (2.69), differentiable on (a,b) with

Thus by Rolle’s theorem, there exists ¢ € (a, b) such that h'(c) = 0, which gives the result.
If ¢(x) # 0 for all © € (a,b), then (2.96) implies g(a) # ¢g(b), so that (2.98) can be

written as
f(b) = fla) _ f(c)
g(b) —gla) — g'(c)’

Remark: Recall the intermediate value theorem (IVT) in (2.60). Let I C R be an interval
and let f : I — R be differentiable on I. If f’ is continuous on I, then the IVT applied
to f’ implies that, for a,b € [ with a < b, « = f'(a), 8 = f'(b) and a value v € R with
either « <y < fora>v>f, Jc € (a,b) such that f'(c) =~. More intriguing is the fact
that this still holds even if f’ is not continuous, a result attributed to Jean Gaston Darboux
(1842-1917); see Stoll (2001, p. 184), Browder (1996, Thm. 4.25) or Pugh (2002, p. 144). Tt

is referred to as the Intermediate Value Theorem for Derivatives.

Remark: The need occasionally arises to construct simple graphics like Figure 3,
and it is often expedient to use the plotting and graphics generation capabilities
of Matlab or other such software. In this case, the graph was constructed using
the function f(z) = 1/(1 — x)? with endpoints a = 0.6 and b = 0.9.
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This is also a good excuse to illustrate Matlab’s symbolic toolbox (which uses the
Maple computing engine). The top third of the code in Listing 2 uses some basic
commands from the symbolic toolbox to compute & based on our choice of f, a
and b. The rest of the code constructs Figure 3.

While Matlab supports interactive graphics editing, use of the native graphics
commands (“batch code”) in Listing 2 is not only faster the first time around
(once you are familiar with them of course), but ensures that the picture can be
identically reproduced. |

We now turn to the most basic concepts of function minimization / maximization. The
first theorem is the same as Fermat’s theorem given above in (2.74), which we needed for
proving Rolle.

. Let I be a neighborhood of xy and suppose that the function f : I — R is
differentiable at xy. If the point xg is either a maximizer or a minimizer of the function
f: I — R, then

1 (zg) = 0. (2.99)
Proof: Observe that, by the definition of a derivative,
f(x) — [ (wo) lim f(x) — f (w0)

lim —————~=
r—x0,r<T0 T — 2o T—X0,T>T0 T — 2o

= f" (o).
First suppose that zy is a maximizer. Then

f(@) — [ (x0)

r — X

>0 for xz in I with x < x,

and hence, from (2.26),

fla) = lim LE=SE)

T—x0,r<T0 T — X

On the other hand,

Mgo for x in I with x > =z,
xr — Xp
and hence
T—T0,T>T0 T — Xy

Thus, f’ (zo) = 0.

In the case where x is a minimizer, the same proof applies, with inequalities reversed.

: Let I be an open interval and the function f : I — R be differentiable. Suppose
that f'(x) > 0 for all z in /. Then

f I — R is strictly increasing. (2.100)

67



function meanvaluetheorem

Yoo oo o oo o To o ToToToTo o 1o o o 1o o o o o o o o o o o o To o ToToToTo oo oo oo o o o o o o o oo o o To T ToToTo T oo oo o

Doolotolh Use the symbolic toolbox to compute xi AN
syms x xi real Y declare x and xi to be real symbolic variables Y
f=1/(1-x)"2 % our function )
a=0.6; b=0.9; 7% use these two end points /A
fa=subs(f,’x’,a); fb=subs(f,’x’,b); % evaluate f at a and b %
ratio=(fb-fa)/(b-a) % slope of the line /A
df=diff (£) % first derivative of f A
xi = solve(df-ratio) % find x such that f’(x) = ratio /A
xi=eval(xi(1)) % there is only one real solution A
subs(df,’x’,xi) % just check if equals ratio /A

Yoo oo o oo ToTo o ToToToTo oo o o o 1o fo o o o o o o o o To o o To ToToToTo oo oo oo o o o o o o o o oo To o ToTo T T oo o o

% Plot function and the slope line
xx=0.57:0.002:0.908; ff=1./(1-xx).72; h=plot(xx,ff)
hold on
h=plot([a ; b]l,[fa ; fb]l,’go’); set(h,’linewidth’,28)
hold off
set(h,’LineWidth’,1.5), bot=-6; axis([0.53 0.96 bot 125])
set(gca,’fontsize’,21,’Box’,’off’,
’YTick’, [fa fb], ’YtickLabel’,{’f(a)’ ; ’f(b)’},
’XTick’, [a b], ’XTickLabel’,{’a’ ; ’b’})
h=line([a b], [fa fbl);
set(h,’linestyle’,’--",’color’,[1 0 0],’linewidth’,0.8)

% plot line y-yO = m(x-x0) where m is slope and goes through (x0,y0)
x0=xi; yO=subs(f,’x’,x0);

xa=a+0.4x*(b-a); xb=b-0.0*(b-a) ;

ya = yO+ratiox(xa-x0); yb = yO+ratio*(xb-x0);

h=line([xa xb], [ya ybl);

set(h,’linestyle’,’--’,’color’,[1 0 0],’linewidth’,0.8)

% vertical line at xi with label at xi

h=line([xi xi], [bot y01);

set(h,’linestyle’,’--’,’color’,[1 0.4 0.6],’linewidth’,1.2)
text(xi-0.005,-13,’\x1i’, ’fontsize’,24)

% Text command (but not the XTickLabel) supports use of

% LaTeX-like text strings

Program Listing 2: Computes £ in the mean value theorem, and creates Figure 3

68




Proof: Let w and v be points in [ with © < v. Then we can apply the Mean Value
Theorem to the restriction of f to the closed bounded interval [u,v] and choose a point
zo in the open interval (u,v) at which

Since f' (zg) > 0 and v —u > 0, it follows that f(u) < f(v).

By replacing f : I — R with —f : I — R, the above implies that if f : [ — R has a
negative derivative at each point x in I, then f : I — R is strictly decreasing.

Definition: A point zy in the domain of a function f : D — R is said to be a local
maximizer for f provided that there is some ¢ > 0 such that

f(z) < f(xg) forall x in D such that |z — zo| < 0.
We call 2y a local minimizer for f provided that there is some § > 0 such that

f(z) > f(xg) forall x in D such that |z — zo| < 0.

The above result (2.99) asserts that, if I is a neighborhood of zy and f : I — R is
differentiable at x(, then for xy to be either a local minimizer or a local maximizer for f, it
is necessary that

f/ <x0> =0.

However, knowing that f’(z) = 0 does not guarantee that x is either a local maximizer
or a local minimizer. For instance, if f(z) = z* for all z, then f’(0) = 0, but the point 0
is neither a local maximizer nor a local minimizer for the function f. In order to establish
criteria that are sufficient for the existence of local maximizers and local minimizers, it is
necessary to introduce higher derivatives.

The second derivative of f, if it exists, is the derivative of f’, and denoted f” or f, and
likewise for higher order derivatives. If f(") exists, then f is said to be rth order differentiable,
and if f) exists for all » € N, then f is infinitely differentiable, or smooth (see, e.g., Pugh,
2002, p. 147). Let f© = f. As differentiability implies continuity, it follows that, if f is
rth order differentiable, then f("~V is continuous, and that smooth functions and all their
derivatives are continuous. If f is rth order differentiable and f(") is continuous, then f is
continuously rth order differentiable, and f is of class C". An infinitely differentiable function
is of class C*°.

For a differentiable function f : I — R that has as its domain an open interval I, we say
that f : I — R has one derivative if f : I — R is differentiable and define f®(z) = f'(z) for
all z in 1. If the function f’: I — R itself has a derivative, we say that f : I — R has two
derivatives, or has a second derivative, and denote the derivative of f': I — R by f”: I — R
or by f® : I — R. Now let k be a natural number for which we have defined what it means
for f: I — R to have k derivatives and have defined f* : I — R. Then f : I — R is said
to have k + 1 derivatives if f(*) : I — R is differentiable, and we define f*+1 : T — R to be
the derivative of f*) : I — R. In this context, is it useful to denote f(x) by f©(z).

In general, if a function has k derivatives, it does not necessarily have k + 1 derivatives.
For instance, the function f : R — R defined by f(x) = |z|z for all = is differentiable but
does not have a second derivative.
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The goal now is to determine what conditions on the second derivative of function f are
required in order to conclude that f'(zg) = 0 = ¢ is a local minimizer or maximizer of f.
The conditions are given below in (2.105) and (2.106). To prove them, we first require a
preliminary result.

: For an open interval I C R, let g : I — R be differentiable, and let zy € I. If
g (xo) > 0, then

30 > 0 such that 0 < |z — 2| <0 = [g(z) — g (z0)] /[ — x0] > 0. (2.101)

Proof: By definition of the derivative, and the assumption ¢’ (xzq) > 0,

T—T0 T — X

> 0.

If ¢’ is continuous at zg, then (2.101) follows from (2.46) applied to ¢’. Now consider the
case without the continuity assumption. Define h: I — R as

M) = {[9<x> —g(@o) /e — o], ifz # o,

g (xg), if x = x.

As g is differentiable, g is continuous from (2.73). From (2.38) and (2.40), h is continuous
for © # xo. As lim, ., h(x) = h(z0), (2.37) implies h is continuous also at x = zg, and
thus h : I — R is continuous. Result (2.101) now follows from (2.46) applied to h.

Before proceeding, we work a bit further with this lemma. It is equivalent to the remark
in Stoll (2021, p. 199):

It needs to be emphasized that if the derivative of a function f is positive at a
point ¢, then this does not imply that f is increasing on an interval containing
¢; it could be non-monotone on any interval containing c. If f’(¢) > 0, the only
conclusion that can be reached is: 36 > 0 such that

Vo e (c—d,¢), f(x) < f(c) and Vo € (¢,c+9), f(z) > f(c). (2.102)
This does not mean that f is increasing on (¢ — 0, ¢+ 9).

While perhaps a bit tricky to visualize because f’ is not continuous, imagine, for example,
a differentiable (and thus continuous) function that is (pathologically) oscillatory for x €
(¢ — 0,¢+ d) but such that (2.102) is satisfied, i.e., all its values for x € (¢ — 9, ¢) lie below
f(c), and all its values are x € (¢, c + ) lie above f(c). Here is the proof of (2.102):

Proof: By hypothesis, f'(c) exists and f'(¢) > 0. Let € = f’(¢) > 0. Then by existence
of the derivative, 30 > 0 such that

w — f'(¢)] <€, Yz el with0<d(z,c) <. (2.103)
This implies that

fl(e) —e< M, Vo e I with 0 < d(x,c) <. (2.104)

N—— Tr —cC
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Note that, whenever x > ¢ (with 0 < z — ¢ < ), the denominator is positive, so that
f(x) > f(c). Similarly, whenever ¢ > x (with 0 < ¢ — z < ¢§), we must have f(c) > f(x).
We have therefore proven the existence of a  as required.

: Let I be an open interval containing the point xy and suppose that the function
f I — R has a second derivative. Suppose that f’(xg) = 0. Then,

If " (z9) > 0, then z; is a local minimizer of f. (2.105)
If " (z9) <0, then z; is a local maximizer of f. (2.106)

Proof: First suppose that f” (z9) > 0 (and not necessarily continuous). Since

f// (xo) — lim f’(I) B f, (l’o) >

T—T0 T — X

0,

it follows from Lemma (2.101) that there is a § > 0 such that the open interval
(xg — 0, o + d) is contained in I and

/ (xa)g — ‘i (z0) >0 if z belongs to (xg — §, 20+ ). (2.107)
— g

But f’(z9) =0, so (2.107) amounts to the assertion that
f(z)>0ifxg<z<z0+d and f'(z) <0ifxg—3d <z < 2. (2.108)
From the first inequality in (2.108), the MVT implies 3¢ € (xg, x) such that

f () = f (o)

r — T

=f(€)>0 = [(z)>[(0);
while from the second inequality in (2.108), the MVT implies 3¢ € (x, x¢) such that

LEZT@ _ ey <o = fia) > 1 (o).
0 X
Thus, for 0 < |x — zo| <, f(z) > f (z0), which is (2.105).

A similar argument applies for f” (xy) < 0 to prove (2.106).

The preceding theorem provides no information about f (xy) as a local extreme point if
both f’ (z9) = 0 and f” (z¢) = 0. As we see from examining functions of the form f(z) = ca™
for all z at xy =0, if f'(x9) =0 and f” (x¢) = 0, then xy may be a local maximizer, a local
minimizer, or neither.

2.3.4 Exponential and Logarithm

For the sake of brevity, we will always represent this number 2.718281828459...
by the letter e. (Leonhard Euler)

The exponential function arises ubiquitously in mathematics, and so it is worth spending
some time understanding it. As in Lang (1997, §4.1, §4.2), let f : R — R be such that

(i) f'(z) = f(z) and (i) f(0) =1. (2.109)
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From the product rule (2.69), the chain rule (2.71), and using (i),

[f (@) f (=) = =f (@) f' (=2) + f (=2) f' () = = [ (2) f (=2) + [ (==) f () = O,

so that, from (2.97), f (z) f (—z) is constant, and from (ii), equals 1. Thus, f (z) # 0 and
f(=z)=1/f(z). As f is differentiable, f is continuous. From (ii) and the contrapositive of
the IVT (2.60), Vz, f () > 0. Thus, from (i), Vz, f'(x) > 0, i.e.,

f is strictly increasing. (2.110)

Further, as f” = f' = f, f is strictly convex (see §2.4).

A function f satisfying (i) and (ii) in (2.109) is unique. (2.111)

Proof: Suppose g is any function such that ¢ = g. From (2.70), differentiating g/ f
(and Vz, f(x) # 0) yields 0. Hence, from (2.97), g/f = K for some constant K, and thus
g=Kf. If g(0) =1, then g(0) = K f(0) so that K =1 and g = f.

flaty)=[f(2)fly) and f(nz)=[f(2)]", neN (2.112)

Proof: For the first result in (2.112), fix a number a, and consider the function g(z) =
fla+z). Then ¢'(z) = f'(a+x) = f(a+ x) = g(z). From the previous uniqueness
proof, ¢ = ¢ implies g(x) = K f(x) for some constant K. Letting x = 0 shows that
K = ¢(0) = f(a). Hence, f(a +x) = f(a)f(z) for all z, as contended. For the second
result in (2.112), this is true when n = 1, and assuming it for n, we have

f((n+1)a) = f(na +a) = f(na)f(a) = f(a)"f(a) = f(a)""",
by induction. The second result in (2.112) also holds for n € R.

Function f is the exponential, written exp(:). Defining e = f (1), and using that the
second result in (2.112) also holds for n € R, we can write

exp(z) = f(z) = f(1-2) = [f(D]" =€". (2.113)

As shown above, f(x) is strictly increasing; and, as f(0) = 1, we have that f(1) =e > 1.
It follows from (1.35) and the fact that e > 1 that

Vk € N, hm e"/nF =00, nmeN. (2.114)

Now replace n by z, for € R.y. Use of the quotient rule (2.70) gives

d [e* xke® — eTkghl  e”
()= =

which is positive for k < x, i.e., for z large enough, e*/z* is increasing. This and the limit
result for n € N implies that

lim & =00, forallkeN, (2.115)
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a result we will use below in (2.135). Recall the discussion just above (2.76): As f(x) is
strictly increasing, the inverse function g exists; and as f(z) > 0, ¢g(y) is defined for y > 0.
From (ii), g (1) = 0. From (2.76) and (i) in (2.109),

1 1 1

gy) = o) W) v (2.116)

For a > 0, the weighted sum and chain rules for differentiation, (2.72) and (2.71), yield

l9(az) — g ()] = ag' (az) — ¢’ () = — — — =0,

and (2.97) then implies g (ax) — g(z) = c or g(ax) = ¢+ g(x). Letting x = 1 gives
g(a) =c+ g (1) = ¢, which then implies

g(ax)=g(a)+g(z). (2.117)

By induction, g (") = ng (x). Function g is the natural logarithm, denoted log(y), logy or,
from the French logarithm natural, Iny. Thus,

Inl =0, (2.118)
Inz"=nlhz, neN, x>0, (2.119)
and, from (2.116),
d 1
%lnx:;, x> 0. (2.120)

AsInl =0, write 0 = In1 = In(z/z) = Inz + In(1/x) from (2.117), so that Inz~! =
—Inz. The last two results generalize to (see Stoll, 2001, p. 234)

In(z?)=p-In(z), peR, xeRy,. (2.121)

The reader can have a peak at Example 2.47 below regarding (2.119) and (2.121), where the
log function is defined in terms of an integral. Based on their properties, the exponential and
logarithmic functions are also used in the following way:

For r € R and z € R., z" is defined by z" := exp (rlnx). (2.122)

Example 2.15 To evaluate lim, g+ 2%, use I’Hopital’s rule and (2.120) to see that

_ . Inz . 1/z _
lim zlnz = lim — = lim 2:—11m = 0.
z—0t z—0t 1/1’ =0t —~ r—0t

Then, by (2.37) and the continuity of the exponential function,

lim 2% = lim exp (Inz”) = lim exp (zlnx) = exp ( lim xlnx) =exp0=1. W

z—0t z—0t z—0t z—0t

Example 2.16 We will make important use of the following two basic limit results. From
the continuity of the exponential function and use of I’Hopital’s rule,

Ink Ink
. 1k _ 1: kY — 7; e I : b : —
lim k ]}erolo exp (lnk ) khjgo exp < ? ) exp klgg@ ’ exp ]}erolo (1/k) = 1.

k—o0
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Similarly, and again using the continuity of the exponential function, for any a € R,

1 1
lim /a = lim ¢'/" = lim exp (M) = exp lim <ﬂ) =exp (0) = 1. (2.123)
n n

n—oo n—oo n—oo n—oo
We now give a proof of (2.123) using much less sophisticated machinery. As in Petrovic
(Example 2.9.1), first let a > 1. Recall Bernoulli’s inequality (which, for x > 0, is just the

first term in the binomial theorem expansion (1.34); or can be proven by induction): For
r>—-1landneN, (1+z)">1+nx. Withz:= {{a—12>0,

—1
a=14+2)">1+nz=1+n(Ya—1), or 0<Va-1<22
n

Taking the limit as n — oo and use of the Squeeze Theorem (2.9) implies lim a,, = 1.
Now consider the case for which 0 < a < 1. Let b =1/a > 1. From the previous result,
1 =lim ¥/b = lim b"/™. From the limits of ratios result (2.25),

1 lim1 1

U lm b 1

(Enter a positive number in your calculator, repeatedly press the v/ key, and see what hap-
pens: Either the key will break, or a 1 will result). |

lim {/a = lim

Example 2.17 Let f (z) = a", forr € R and x € Ryg. From (2.122) and the chain rule,

[/ (x) = exp (rlnx)g = a:’é S

which extends the results in Example 2.7 in a natural way. |
Example 2.18 Consider the case when the variable is not the base, but the exponent:

For t € R.y and f(z) =", f'(z) =t"Int. (2.124)
From (2.122), f(z) = exp(xInt). Then f'(x) = exp(xInt)(Int) = t*Int (chain rule). [

This next example gives an application of (2.124). We need the following definition,
which we take from §2.6.8, where further detail will be found. Let {f,(z)} be a sequence of
functions with the same domain, say D. The function f is the pointwise limit of sequence
{fn}, or {fn} converges pointwise to f, if, Vo € D, lim, o fn (x) = f(x). That is, Vo € D
and for every given € > 0, 3N € N such that |f, () — f (z)| <€, ¥n > N.

Example 2.19 (Stade, Fourier Analysis, p. 157) For domain D = [0,2x], N € N, let
fn D — R be the function defined by

fn@) =N (=) var—= (2125)

Also let f(x) =0 for all x € [0,27]. Show that the fy’s converge pointwise to f but do not
converge to f in norm.

Solution: Let’s first take care of the cases x = 0 and © = 2w, which are easy: fn(0) =
fn(27m)=0— 0= f(0) = f(27) as N — oo, as required.
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Nezxt, for any fized element x of (0,27), use [’Hopital’s rule and (2.124) as follows:

lim fy(x) = lim N ()" Var—z = v2r 7 Jim

N—o0 N—oo 2T N—o0 (27T/SL’)N
1

=21 —x lim (27 /)N In(2m /)
Vor—w ( . )N -0

B In(27/x) Nae \27

(The limit on the right is zero because 0 < x < 27m.) So the fx’s converge pointwise to f on
[0,27], as required. Pointwise convergence is defined in (2.274) below. |

Example 2.20 For x > 0 and p € R\ {0}, the chain rule and (2.120) imply

d b p(nz)"
. (Inz)’ = ——, (2.126)

x x
so that, dividing both sides by p, integrating both sides (and using the fundamental theorem
of calculus; see §2.5.2 below),
Inx)? d
(Inz) :/ T _ (2.127)
p z(lnx) 7

which we require below in Example 2.68. Also, from (2.120) and the chain rule,

d 1 d 1
—In(l =——lhzr= 2.128
dr n(ln2) mzde zlng ( )

also required in Fxample 2.68. ]

Example 2.21 Fory >0,k €R, and f : R — R given by f(p) = 4y,

d d
f'(p) = d_pykp =D exp (kpIlny) = exp (kplny) klny = y"kIny. (2.129)

With k= —1, x > 1, and y = Inxz, (2.129) implies

d -\ —p
p (Inz)™) = —(Inz) "In(lnz).

Also, fory >0 and k = —1, (2.129) implies

d 1-p d —p 1-p
- - — 1 2.130
o’ Yl y "lny, (2.130)
which we will use in the next example. |

Example 2.22 In microeconomics, a utility function, U (-), is a preference ordering for
different goods of choice (“bundles” of goods and services, amount of money, etc.) For
example, if bundle A is preferable to bundle B, then U (A) > U(B). Let U : A — R,
A C Ry, be a continuous and twice differentiable utility function giving a preference ordering
for overall wealth, W. Not surprisingly, one assumes that U' (W) > 0, i.e., people prefer more
wealth to less, but also that U" (W) < 0, i.e., the more wealth you have, the less additional
utility you reap upon obtaining a fized increase in wealth. (In this case, U is a concave
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function and the person is said to be risk-averse.) A popular choice of U is U (W;~) =
W'/ (1 —~) for a fized parameter v € Rsg \ {1} and W > 0. (Indeed, an easy calculation
verifies that U' (W) > 0 and U" (W) < 0). Interest centers on the limit of U as v — 1. In
this case, lim,_,y W=7 =1 and lim,_,; (1 — y) = 0 so that I’Hopital’s rule is not applicable.
However, as utility is a relative measure, we can let U (W;~) = (W=7 —1) /(1 — ) instead.
Then, from (2.130), (d/dy) W™ = W' InW, so that

1—y 1 1—y 1
lim U (W;~) = lim W=l lim (d/dy) (W ) =lm W' ' InW = InW. [ |
Y1 =1 1—v =1 (d/dy) (1 —7) v

Example 2.23 A useful fact is that In (14 z) < z, for all x € Ry, easily seen as follows.
With f () = In(1+2) and g (x) = x, note that f and g are continuous and differentiable,
with f(0) = g (0) =0, but their slopes are such that f' (z) = (14+z)~' <1 =g (z), so that,
from Example 2.14, f (x) < g (x) for all x € Ryy.

We can also prove that In (1 +x) < x for x > 0 (and more) using the MVT. As in Stoll
(2021, Example 5.2.7), we wish to prove that

1f_x <In(l+z) <z foral =z=>-1. (2.131)

Let f(x) =In(l+xz), x € (—1,00). Then f(0) =0. Ifx > 0, then by the MVT, 3c € (0,x)
such that

In(1+ ) = f(z) — f(0) = f'(c)x. (2.132)
But f'(c)=(1+c¢) b and (1+2)"' < (1+¢)"t <1 for all c € (0,z). Therefore
x /
Tz < fl(e)xr < x, (2.133)
and, as a consequence of (2.132) and (2.133), and adding the x = 0 case,
T
<In(1 < > 0.
T2 = n(l+z)<z forall x>0

Now suppose —1 < x < 0. Observe, as f(0) =0,

_ _ —f(0) = f(=)] _ f(0) - f(=)
In(l+z) = f(z) - f(0) = 0— (0 I)_x()——x’
and, again by the MVT, 3c € (x,0) such that
FO) = fle) oy 1
0—=x _f<c)_1+c’
1.e., multiplying this by x,
T
In(1 = — = . 2.134
(1 4) = f(a) — F(0) = 7o (2.134)
But as x < ¢ <0, we have 1 < (14+¢)™' < (1+2)7!, and as x is negative,
T
l4c¢” 1+a
From (2.134) and that ¢ < 0, we have 1 + ¢ < 1, so that (as x < 0) In(1 + z) < x. Thus,
x x
=1 .
T3z “11c ml+o)<e
Hence, the desired inequality holds for all x > —1, with equality if and only if x = 0. |
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Example 2.24 For any k € N and z € R, letting x = e* shows that

Inz)" k
im W 2 g (2.135)

T—00 €T z—00 e%

from (2.115). Also, for some p > 0, with z = aP, (2.135) implies

1 1
T N L) Y (2.136)
rz—o00 P 2Z—+00 z
a result required below in Example 2.67. ]

Most students will be familiar with a (common and correct) different definition of the
exponential function. Here is the connection. As the derivative of Inx at z =11is 1/x =1,
the Newton quotient (2.63), that Inz? = plnx from (2.121), and the continuity of the log
function combined with continuity result (2.37) imply that
In(14+h)—1Inl In (14 h)

= lim = lim
h—0 h h—0

= lim <ln (1+ h)l/h> ~In (hm (1+ h)l/h> .

h—0

Taking the inverse function (exponential) and recalling (2.113) gives

1 n
. h 1 1
exp(1) —6—}1,15)1%](1—'_]1) = lim (1+ n) :

n—o0

We now prove the other direction. First observe that, from the chain rule and (2.120),

_ A
n\ +n?’

d 1 G
%ln(qu)\/n) = 1—1—)\/71(_)\” )=

To evaluate lim,_,o, (1 + A/n)", take the log of this, use the continuity of the log function,
and I'Hopital’s rule to get

In lim (1+XA/n)" = lim In(1+X/n)" = lim nln (14 \/n)

n—0o0
Ln (14 A\ ——2-
—  im dn ng A SD SIS [ ( n ):)\,
n—00 %n_l n—oo  —-5 n—oo \ 1+ \
ie.,
lim (1 4+ \/n)" = e (2.137)
n—o0
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2.4 Convexity

Here we investigate some basic relations between convexity, continuity, and derivatives. Con-
vexity is an extremely important property in optimization. There are several books dedicated
to convexity and optimization. This section is based primarily on Ghorpade and Limaye.

Most students will have learned the following: Given a twice differentiable function f :
R — R, f is convex if f”(z) > 0 for all x € R. Likewise, f is concave if f"(z) < 0 for
all x € R. Figure 4 shows an illustration of convex and concave functions. For example,
f(x) = ax?® + bx + ¢ is convex if a > 0, and is concave if a < 0. These definitions are too
specific, requiring f to be twice differentiable.

Yy )

t + t xr + + + + X
0 a 11 x9 b 0 a T x9 b

Figure 4: From Ghorpade and Limaye, page 25

We now develop the more general definition, ultimately given below in (2.141), and some
basic results.

Geometrically, a function is convex if the line segment joining any two points on its graph
lies on or above the graph. A function is concave if any such line segment lies on or below the
graph. Another geometrically visible fact is that, for a convex function, each tangent line of
the function lies entirely below the graph of the function. More specifically, Let f : (a,b) — R
be a convex function. Then, for every point ¢ € (a, b), one can prove there exists a line L in
R? with the following properties:

(a) L passes through the point (¢, f(¢)). (b) The graph of f lies entirely above L.

Any line satisfying the above is referred to as a tangent line for f at c. Note that f does
not need to be differentiable. If not, then the slope of a tangent line may not be uniquely
determined. As an example, consider f : [0,1] — R, with f(z) = z/2 for x € [0,1/2]; and
f(z) =2 —1/2, for x € (1/2,1]. Another canonical example is f(z) = |z|.

Every convex function is continuous. (2.138)

Proof: As in https://e.math.cornell.edu/people/belk/measuretheory/
Inequalities.pdf: Let f: (a,b) — R be a convex function, and let ¢ € (a,b). Let L be
a linear function whose graph is a tangent line for f at ¢, and let P be a piecewise linear
function consisting of two chords to the graph of f meeting at c¢. See Figure 5. Then
L < f < P in a neighborhood of ¢, and L(c) = f(¢) = P(c). As L and P are continuous
at ¢, it follows from the Squeeze Theorem and the sequential definition of continuity that
f is also continuous at c.

Analytically, for x; < & < x9, we think in terms of the slope of the line from x; to z,
compared to the slope of the line from x; to x3. For convex, the latter should be larger than
the former. This gives rise to the following.
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P(x)
@(x)

L(x)

c

Figure 5: Convex function f is continuous at each point in an open interval of its domain. Taken from
https://e.math.cornell.edu/people/belk/measuretheory/Inequalities.pdf.

Definition: Let D C R be such that D contains an interval I, and let f : D — R be a
function. We say that f is convex on [ if

T, T, x €l oy <z <xy = f(2)— f(17) < f(a:;) —i(iﬁ) (x — 1), (2.139)
2 — T1

and f is concave on [ if

f(@2) = f (1) (z — 7). (2.140)

To — X1

v

1,20, 2 €[, <x <29 = f(2)— f(27)

An alternative way, and the one more commonly seen in the literature, to formulate the
definitions of convexity and concavity is as follows.

: Function f is convex on [ if (and only if)
V$1,1’2 € I, r1 < Ta, YVt € (O, 1), f ((1 — t).’]fl + txg) S (1 — t)f (.361) + tf (%2) .

Proof: First note that, for all x1, 9 € R with x1 < x5, the points  between x; and z»
are of the form (1 — t)zy + tzy for some ¢t € (0, 1); in fact, ¢ and x determine each other

uniquely, since
r — T

r=(1—t)r)+try < t= .
T2 —I1

Substituting this into the previous definition gives the result.

In the previous result, the roles of ¢ and 1 — ¢ can be readily reversed, and with this in
view, one need not assume that z; < xo. Thus, we arrive at our final definition.

Definition: Function f is convex on [ if (and only if)
fay+ (1 —t)xe) <tf(ry)+ (1 —t)f(xe) forallzy,zo€landte (0,1). (2.141)
Similarly, f is concave on [ if (and only if)

faoy+ (1 —t)xe) >tf(x1) + (1 —t)f (x2) forall zy,20 € Tand t € (0,1). (2.142)

: A function f: (a,b) — R is convex if and only if it is continuous on (a, b) and

f <$1 ;‘Zh) < f(xl)‘;f(m)’ Va2 € (a,b). (2.143)

satisfies
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See Ghorpade and Limaye, p. 102, #3.34 for this result. We will in fact prove one direction
of (2.143) next, in (2.144), and for a more general linear combination of z;. The result is
well-known, and very important; it is called Jensen’s inequality, given in (2.153) below.

: Let f be convex on (a,b) as in (2.141). Then

f is continuous on (a,b). (2.144)

Proof: This is proven without appealing to geometric arguments as above; so purely
analytic. The result also holds for f concave. As in Ghorpade and Limaye (Prop 3.15),
let I be an open interval in R and let f : I — R be convex on I or concave on [.

First, suppose f is convex. Let ¢ € I. Then there is r > 0 such that [c —r,c+ 7] C I.
Let M := max{f(c—r), f(c+r)}. For each = € [c — r,c+ 7], there is t € [0, 1] such that
x=(1—t)(c—r)+t(c+r), and, hence, from (2.141),

fle) <A =t)f(c=r)+tflc+r)<(1—t)M +tM = M. (2.145)
Given any € > 0 with e < 1, and = € R, we claim that
|z —c| <re=-x el and|f(z)— f(c)| < e(M — f(c)).
Suppose |z — ¢| < re. Then x € [¢c — r,c+r], since e < 1, and so x € I. Define

r—cC

xr—c
y:=c+—— and z:=c—
€ €

Then |y —c| =|z—¢|=|x —¢|/e <r,and so y,z € [¢c — r,c+ r|. Moreover,

1 + €
= T z.
1+e€ 1+e€

r=(l—€c+ey and ¢

Since f is convex and 0 < € < 1, we see that

fz) <A =e)f(c)+efly), thatis, f(z)—f(c) <e(f(y) = fe)). (2.146)

Recall y € [c — r,c+ r] and, for each y € [c — r,c+ 7], (2.145) implies f(y) < M. Thus,
(2.146) implies that f(x)—f(c) < e(M—f(c)). Also, as f is convex and z,y, z € [c—r, c+71],

Q) <~ fa) +

<17 1+€f(z), that is, (14¢€)f(c) < f(z) +€f(2).

The last inequality implies that f(c)— f(z) < e(f(2)—f(c)) < e(M — f(c)). It follows that
|f(x) — f(c)] < e(M — f(c)), and thus the claim is established. The result of continuity
of f at ¢ follows from the d-¢ definition of continuity. If f is concave, it suffices to apply
the result just proved to —f.

: Let I be an interval containing more than one point, and let f : I — R be a
differentiable function. Then

(i) f' is monotonically increasing on [ <= f is convex on /. (2.147)

Similarly,
(ii) f’ is monotonically decreasing on I <= f is concave on I.
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(iii) f’ is strictly increasing on I <= f is strictly convex on I.
(iv) f’ is strictly decreasing on I <= f is strictly concave on I.

Proof of (2.147): As in Ghorpade and Limaye (Prop 4.33). First, assume that f’ is
monotonically increasing on I. Let x1,x9, 2 € I be such that z; < x < x5. By the MVT,
there are ¢; € (z1,2) and ¢z € (z,25) satisfying

f@)=flz)=f () (x—21) and  f(x2) — f(z) = f'(c2) (22 — ).
Now ¢; < ¢y and f’ is monotonically increasing on I, and so

f(ZL‘) B f (371) _ f/ (Cl) < f/ (02> _ f (*T?) - f(x)

r — T To — X

Collecting only the terms involving f(x) on the left side, we obtain

) (s ) s L) S

T—1x] Tog—2 T —1T, To—1T

Multiplying throughout by (z — x1) (x2 — ) / (x2 — x1), we see that

[ (1) (w2 — ) + f (22) (x — 1) — F (o) + [ (x2) — f (1)

To — X1 To — 1

f(l‘) < (JI - xl) )
where the last equality follows by writing x5 — x = (29 — 1) — (z — x1). Thus, recalling
(2.139), f is convex on I.

Conversely, assume that f is convex on I. Let x1,z9,x € I be such that ;1 < x < x,.
Then

f(22) — f (1) (@ —21) = f (1) + [ (@2) — [ (21)

To — I T2 — T1

f (x2) — f (1)

f(z) < flx) +

(22 = 21) = (22 — )]

f(%) - f(%)

= flz1) + [f (22) = f(21)] - P (w2 —2) = f(x2) — pa—— (w2 — ).
As a consequence, the slopes of chords are increasing, that is,
Fa) = f @) _ fle) = F (@) _ [ @) = ()
Tr— I - To9 — I1 - Tog — X
Taking limits as * — x] and x — x5, we obtain
Flay < LT g
To — T1
Thus, f’ is monotonically increasing on 1.
: Suppose f”(z) exists for all x € (a,b). Then
f convex on (a,b) <= Vz € (a,b), f"(z)>0. (2.148)
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Proof: Just apply (2.147) and the slight variant of (2.100), namely: Suppose f : I — R
is differentiable on the interval I. If f’(z) > 0 for all x € I, then f is monotone increasing
on [.

(Ghorpade and Limaye, p. 40, exercise #1.63): Let I be an interval con-
taining more than one point and let f : I — R be a function. Define ¢ (z1,22) =
(f (x1) = f(x9)) /(21 — x5) for xy,29 € I with x; # 3. Then f is convex on [ if and
only if ¢ is a monotonically increasing function of x;, that is,

Vo, xe €1, 11 < 9, Yo € I\{z1,22}, ¢ (21,2) < @ (x9,2). (2.149)

Proof: Ghorpade and Limaye do not provide the proof. Here is one.

Montonically increasing if convex: Suppose that f is convex. Assume for contra-
diction that ¢(z1, ) is not monotonically increasing in ;. That is, we can find x1, 25 € [
with ¥y < 9 and & € I\ {z1, 72} such that ¢(xy,z) > @(xa, z). Assume x; < x < To.1°
Note that, since 7 < x < x5, 3t € (0,1) such that ¢tz + (1 — t)zo = 2. Then

f(w1) — f(toy + (1 —t)wy) > f(x2) = f(txy + (1 —t)xs)

— (txy + (1 —t)z2) o — (tzg + (1 — t)xe)
flz1) = ftor + (1= t)an) _ f(wa) — f(try + (1 — t)zp)
D —t(z1 — z2)

& —t[f(z1) = f(tzr + (1 = O)z2)] > (1= 1) [f(22) — f(tzr + (1 = t)22)]
& fltor+ (1= )as) > (1 — t) f(x2) + tf (1)

Note that going from the second to third row we multiply by —t(1 — ¢)(z1 — x2) > 0,
therefore the inequalities do not switch. The last line contradicts that f is convex. We
therefore conclude that ¢(z1,x) is monotonically increasing in x;.

Convex if montonically increasing: Conversely, suppose that ¢(zq,x) < ¢(x9, )
for any z1,29 € I and x € I\ {x1,22}. Now assume for contradiction that f is not
convex, i.e., 3t € (0,1) and z1,zo € I (with z; # x3) such that f (tzy + (1 —t)xs) >
tf (x1)+ (1 —1t)f (x2). Assume w.lo.g. that x; < 9. Let = txy + (1 — )z, then clearly
x € I. Then

[ty + (1= t)x) > tf (21) + (1 = 1) f (22)
f (b + (L= t)wg) — fwa) > 1 (f (21) = [ (22))
flta+ (1= t)a) = flzz) _ t(f(21) = f(22))

try + (1 — t)xe — 2o try + (1 —t)xe — 29
N [ty + (1 = t)xy) — f(2) < [ (1) = f (22)
try + (1 —t)xe — 9 T, — To

& ¢(r, 12) < ¢(21, 72)

The inequality flips in the third line when we divide both sides by (tz1 4+ (1 — t)xg — x9) <
0. The last line contradicts our assumption that ¢(z1,x) is monotonically increasing in
x1, because x1 < x but ¢(x,z5) < ¢(z1,x2). Therefore, we conclude that f is convex.

: If f is convex on (a,b), then

fi(p) and f’ (p) exist for every p € (a,b). (2.150)
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(This appears in Stoll, 2021, p. 221, Misc. Exercise #3, without solution.)

Proof: The case of interest is when f is not differentiable at some p € (a,b). From
(2.138) and (2.144), we know f is continuous at p, i.e., f(p) = f+(p) = f-(p). From (2.77)
and (2.78), we need to show the existence of

flp+h)— f(p) Loy flp+h)— f(p)
h—>o+ h and  f(p) = hl—%lf h ‘

filp) =

Recall that a limit of function f : D — R as x — ¢ exists, denoted f(z) — ¢ as z — ¢,
or lim, . f(x) = ¢, if there exists ¢ € R such that, for any sequence {x,} € D\ {c} with
z, = ¢, f(z,) — €. Consider f'(p) and let z, = p + 1/n, for n € {ng,ng +1,...},
where ng is the smallest value of n € N such that p + 1/n < b (which we know exists, by
invoking the well-ordering principle and the Archimedean Property). Let h, k € N such
that ng > ny > ng, so p < x,, < x,,. From (2.139),

f(xnk) - f(p) S f(xnh) - f(p>

, (2.151)

The result now follows from (2.149). The proof for f’ (p) is similar, or possibly could be
elicited from that of f) (p) and some clever “symmetry” argument, defining some function
g in terms of f.

As an example that a convex function on (a, b) need not be differentiable on (a, b), consider
the following. For any a > 0, let [ = [—a,a], and f: I — R defined by f(z) = |z|. Function
f is clearly convex, but not differentiable at the interior point 0 € (—a,a). Similarly, —f is
concave on I, but not differentiable at 0.

(Young’s inequality): Let a,b € R>¢ and p,q € (1,00) such that 1/p+1/¢ = 1.

Then r
ab< L4 = (2.152)

p q
Proof: (Nair, Lemma 5.2.3) Function ¢ : R — R defined by ¢(z) = ¢*, = € Ris
convex, i.e., for every z,y € Rand 0 < A < 1, p(Az + (1 — N)y) < Ap(z) + ( Ne(y).

Taking A = 1/p we have 1 — A = 1/¢ and

e®/Pty/a < + ﬁ
p q

Now, taking 2 > 0 and y > 0 such that a = e*/? and b = e¥/9, that is, x = In(a?) and
y = In (b?), we obtain (2.152).

(Jensen’s inequality, Finite Version): Let ¢ : (a,b) — R be a convex function,
where —oco < a < b < o0, and let z1,..., 2, € (a,b). Then

©(Mxr+ -+ Awn) < e (1) + -+ Ao (2) (2.153)

for any Ai,..., A\, € [0, 1] satisfying Ay +---+ A\, = 1.

NOTE: A more general version that subsumes this case is Jensen’s inequality for the
Lebesgue integral. An excellent presentation can be found in M. Thamban Nair’s Measure
and Integration: A First Course, Thm 5.2.5. Nair subsequently also shows that Young’s
inequality is a special case of Jensen.
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Proof: (https://e.math.cornell.edu/people/belk/measuretheory/Inequalities.pdf) Let
c= ANx1+- -+ A\xp, and let L be a linear function whose graph is a tangent line for ¢ at
c. Since A\j+---+ X\, = 1, we know that L (A\jxq + -+ + A\pzp) = ML (1) +- -+ N\ L ().
As L < ¢ and L(c) = ¢(c), we conclude that

o(c) = L(c) = L (Mz1+ -+ A\p)
=ML (1) + -+ AL (z,) < Ao (x1) + -+ A (x)

(AM-GM Inequality): Let n € N and let ay, ..., a, be nonnegative real numbers.

Then the arithmetic mean of ay, ..., a, is greater than or equal to their geometric mean, that
is,
a + e an
MEDTO s aran, (2.154)
n
Moreover, equality holds if and only if a; = - -+ = a,.

Proof: As in Ghorpade and Limaye (Prop 1.11) If some a; = 0, then the result is
obvious. Assume a; > 0. Let g = (a;- --an)l/n and b; = a;/g for i = 1,...,n. Then
by, ..., b, are positive and by ---b, = 1. We shall now show, using induction on n, that
by + -+ 4+ b, > n. This is clear if n = 1 or if each of by,...,b, equals 1. Suppose n > 1
and not every b; equals 1 . Then by ---b, = 1 implies that among by, ...,b, there is a
number < 1 as well as a number > 1. Relabeling by, ..., b, if necessary, we may assume
that by <1 and b, > 1. Let ¢; = b1b,. Then ¢1by---b,_1 = 1, and hence by the induction
hypothesis ¢y + by + -+ -+ b,_1 > n — 1. Now observe that

bi+-+b,=(1+ba+ - +by1) +b1+b,—
2(n—1)+b1+bn—blbn:n—{—(l—bl)(bn—l)>n,

because b; < 1 and b, > 1. This proves that b;+- - -+b, > n, and moreover, the inequality
is strict unless by = - -+ = b, = 1. Substituting b; = a;/g, we obtain the desired result.

(AM-GM Inequality, Unequal Weights): Let xy,...,x, >0, and let Ay,..., A, €
0,1] so that Ay +---+ A, = 1. Then

xi\l wi\bn <Mz + o+ M\ (2.155)

Proof: This theorem is equivalent to the convexity of the exponential function. Specif-
ically, from (2.153),

exp{\it1 + - Mptn} < A€t + -+ Aet, Vit €ER.

Substituting z; = e’ gives the desired result.
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2.5 Integration

If we evolved a race of Isaac Newtons, that would not be progress. For the price
Newton had to pay for being a supreme intellect was that he was incapable of
friendship, love, fatherhood, and many other desirable things. As a man he was
a failure; as a monster he was superb.

(Aldous Huxley)

Every schoolchild knows the formula for the area of a rectangle. Under certain conditions,
the area under a curve can be approximated by summing the areas of adjacent rectangles
with heights coinciding with the function under study and ever-decreasing widths. Related
concepts go back at least to Archimedes. This idea was of course known to Gottfried Leibniz
(1646-1716) and Isaac Newton (1642-1727), though they viewed the integral as an antideriva-
tive (see below) and used it as such. Augustin Louis Cauchy (1789-1857) is credited with
using limits of sums as in the modern approach of integration, which led him to prove the
fundamental theorem of calculus. Building on the work of Cauchy, Georg Bernhard Riemann
(1826-1866) entertained working with discontinuous functions, and ultimately developed the
modern definition of what is now called the Riemann integral in 1853, along with necessary
and sufficient conditions for its existence. Contributions to its development were also made
by Jean Gaston Darboux (1842-1917), while Thomas—Jean Stieltjes (1856-1894) pursued
what is now referred to as the Riemann—Stieltjes integral.'?

2.5.1 Definitions, Existence, and Properties

The simplest schoolboy is now familiar with facts for which Archimedes would
have sacrificed his life. (Ernest Renan)

To make precise the aforementioned notion of summing the area of rectangles, some
notation is required. Let A = [a,b], a < b, be a bounded interval in R. A partition of A is a
finite set m = {xy},_, such that a = zp < z; < --- < x, = b, and its mesh (sometimes called
the norm, or size), is given by pu(m) = max{z, — xo, T3 — X1,...,Tp — Tp_1}-

Let 7 and 7y be partitions of 1.

If 7, C 7y, then 7y is a refinement of 7. (2.156)

A selection associated to a partition m = {xx};_, is any set {;},_, such that z;_1 < & < xy
for k=1,...,n.

12 See Stoll (2001, Ch. 6) and Browder (1996, p. 121) for some historical commentary, and Hawkins (1970)
for a detailed account of the development of the Riemann and Lebesgue integrals.
The Riemann integral was fundamentally superseded and generalized by the work of Henri Léon Lebesgue
(1875-1941) in 1902, as well as Emile Borel (1871-1956) and Constantin Carathéodory (1873-1950), giving
rise to the Lebesgue integral. While it is considerably more complicated than the Riemann integral, it has
important properties not shared by the latter, to the extent that the Riemann integral is considered by some
to be just a historical relic. Somewhat unexpectedly, in the 1950’s, Ralph Henstock and Jaroslav Kurzweil
independently proposed an integral formulation that generalizes the Riemann integral, but in a more direct
and much simpler fashion, without the need for notions of measurable sets and functions, or o-algebras. It
is usually referred to as the gauge integral, or some combination of the pioneers names. It not only nests
the Lebesgue integral, but also the improper Riemann and Riemann—Stieltjes integrals. There are several
textbooks that discuss it, such as those by or with Charles W. Swartz, and by or with Robert G. Bartle.
See the web page by Eric Schechter, http://www.math.vanderbilt.edu/~schectex/ccc/gauge/ and the
references therein for more information.
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Now let f: D — R with A C D C R, @ = {z}},_, be a partition of A, and o = {&}/_,
a selection associated to . The Riemann sum for function f, with partition 7 and selection
o, is given by

S(f,m o) Zf &) (o — 1) (2.157)

Observe how S is just a sum of areas of rectangles with heights dictated by f, 7 and o. If
the Riemann sum converges to a real number as the level of refinement increases, then f is
integrable.

Definition: Function f is said to be (Riemann) integrable over A = [a,b] if there is a
number I € R such that: Ve > 0, there exists a partition my of A such that, for every
refinement 7 of 7y, and every selection o associated to m, we have |S (f,m,0) —I| <e. If f
is Riemann integrable over [a, b], then we write f € R[a,b].

The number [ is called the integral of f over [a,b], and denoted by fab f or f; f(z)dx
Observe how, in the latter notation, = is a “dummy variable”, in that it could be replaced
by any other letter (besides, of course, f, a or b), and also how it mirrors the notation in
(2.157), i.e., the term > ;_, is replaced by f the term f (&) is replaced by f (z) and the
difference ( xy — xk—1) by dr. Indeed, the integral symbol [ is an elongated letter S, for
summation, introduced by Leibniz, and the word integral in this context was first used by
Jakob Bernoulli.

For f to be integrable, it is necessary (but not sufficient) that f be bounded on A = [a, b].
To see this, observe that, if f were not bounded on A, then, for every given partition 7 =
{zi}ti_o, Ik €{1,...,n} and an x € [x)_1, z}] such that |f ()| is arbitrarily large. Thus, by
varying the element & of the selection o associated to m, the Riemann sum S (f,7,0) can
be made arbitrarily large, and there can be no value I such that |S (f,7,0) — I| <e.

Example 2.25 Let f () = x. Then the graph of f from 0 to b > 0 forms a triangle with area
b?/2. For the equally-spaced partition m, = {xr};_o, n € N, with x;, = kb/n and selection
o = {&}r_, with & = xy = kb/n, the Riemann sum is

S(f,mo)= fok k—xkl):z%(%_@),

k=1

which simplifies to

S(f,m o) = ( ) Zk—( > (@>:b§(”zl>. (2.158)

This overestimates the area of the triangle because f is increasing and we took the selection
& = x; likewise, choosing &, = xp_1 would underestimate it with S = E@; and, because
of the linearity of f, choosing the midpoint &, = (x,_1 + x1)/2 gives exactly b*/2. From the
boundedness of f on [a,b], the choice of selection will have vanishing significance as n grows,
so that, from (2.158), as n — oo, S (f,m,0) — b*/2 = 1. (Of course, to strictly abide by the
definition, the partitions would have to be chosen as successive refinements, which is clearly
possible. )" [

13The more general case with f(z) = 2P for z > 0 and p # —1 is particularly straightforward when using a
wise choice of non-equally-spaced partition, as was first shown by Pierre De Fermat before the fundamental
theorem of calculus was known to him; see Browder (1996, pp. 102, 121) and Stahl (1999, p. 16) for details.
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Let m = {zx},_, be a partition of f. The upper (Darbouz) sum of f for 7 is defined as
S (f,7) =sup, {S (f,m,0)}, i.e., the supremum of S (f, 7, o) over all possible o associated to
7. Likewise, the lower (Darbouz) sum is S (f, ) = inf, {S (f,7, o)}, and S (f,7) < S (f, 7).
By defining

my =1inf {f (t) : ¢t € [xp_1, 2]} and My =sup{f (t):t € [zr_1,2x]}, (2.159)

we can write S (f,7) = >, mx (vx — 2—1) and S (f,7) = Sp_, My, (z1, — 25—1). Also, if
m < f(z) < M for x € [a,b], then m (b—a) < S(f,n) < S(f,7) < M (b—a). It should be
intuitively clear that, if 7 and 7" are partitions of [a, b] such that 7 C 7/, then

S(f,m) <S(f, 7)< S(f, 7)) <S(f,m). (2.160)

Also, for any two partitions m; and my of [a, ], let 3 = m; Uy be their common refinement,
so that, from (2.160), S (f,m) < S (f,ms) < S(f,m3) < S(f,m), i.e., the lower sum of any
partition is less than or equal to the upper sum of any (other) partition. This fact is useful
for proving the intuitively plausible result, due to Riemann, but going back to Archimedes
(see the Wikipedia entry Method of Exhaustion), and thus sometimes referred to as the

Archimedes-Riemann Theorem:

: If f is a bounded function on [a, b], then
b —
/ [ exists iff Ve > 0, 37 of [a,b] s.t. S(f,m) —S(f,7) <e. (2.161)

Proofs can be found in most real analysis books, e.g., Stol